Transforming growth factor-beta (TGF-beta)-induced alpha-smooth muscle actin (ASMA) expression is a key indicator of myofibroblast differentiation from fibroblasts. Recent studies suggest that a TGF-beta control element is important in the regulation of the ASMA gene promoter by TGF-beta. In this study, the role of Smad3, a key component of the Smad pathway that mediates TGF-beta signaling in regulation of ASMA gene expression, is investigated. All members of the Smad family were expressed in rat lung fibroblasts, and Smad3 expression was elevated upon TGF-beta 1 treatment. Transfection with a Smad3-expressing plasmid markedly increased Smad3 and ASMA protein expression, whereas transfection with an antisense Smad3 plasmid suppressed Smad3 and ASMA expression. Similar effects were noted when the cloned rat ASMA promoter-luciferase reporter gene construct was used to monitor transcriptional activation of the ASMA gene. Electrophoretic mobility shift assays and DNA affinity precipitation indicated Smad3 binding to at least two regions of the promoter containing CAGA motifs, termed Smad3-binding elements (SBEs). Mutation of one of the SBEs decreased promoter activity significantly, indicative of a functional role for this SBE. Taken together, these findings suggest a role for Smad3 in TGF-beta regulation of ASMA gene expression in myofibroblast differentiation.
SummaryAntisense transcription is widespread in many genomes; however, how much is functional is hotly debated. We are investigating functionality of a set of long noncoding antisense transcripts, collectively called COOLAIR, produced at Arabidopsis FLOWERING LOCUS C (FLC). COOLAIR initiates just downstream of the major sense transcript poly(A) site and terminates either early or extends into the FLC promoter region. We now show that splicing of COOLAIR is functionally important. This was revealed through analysis of a hypomorphic mutation in the core spliceosome component PRP8. The prp8 mutation perturbs a cotranscriptional feedback mechanism linking COOLAIR processing to FLC gene body histone demethylation and reduced FLC transcription. The importance of COOLAIR splicing in this repression mechanism was confirmed by disrupting COOLAIR production and mutating the COOLAIR proximal splice acceptor site. Our findings suggest that altered splicing of a long noncoding transcript can quantitatively modulate gene expression through cotranscriptional coupling mechanisms.
Gene activation in eukaryotes frequently involves interactions between chromosomal regions. We have investigated whether higher-order chromatin structures are involved in the regulation of the Arabidopsis floral repressor gene FLC, a target of several chromatin regulatory pathways. Here, we identify a gene loop involving the physical interaction of the 5 0 and 3 0 flanking regions of the FLC locus using chromosome conformation capture. The FLC loop is unaffected by mutations disrupting conserved chromatin regulatory pathways leading to very different expression states. However, the loop is disrupted during vernalization, the cold-induced, Polycomb-dependent epigenetic silencing of FLC. Loop disruption parallels timing of the cold-induced FLC transcriptional shut-down and upregulation of FLC antisense transcripts, but does not need a cold-induced PHD protein required for the epigenetic silencing. We suggest that gene loop disruption is an early step in the switch from an expressed to a Polycomb-silenced state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.