The study on ionic liquid (IL)-based emulsions is very interesting due to the "green" quality and potential wide applications of ILs, whereas the emulsifiers for the formation of ILbased emulsions are extremely limited and mainly centered on low molecular weight surfactants. In this work, synthesis of amphiphilic double-brush copolymers (DBCs) and their application as bespoke macromolecular emulsifiers for the formation of IL-containing non-aqueous emulsions are described. DBCs consisted of a polyurethane (PU) backbone and poly(N,N-dimethyl acrylamide) (PDMA) and poly(methyl methacrylate) (PMMA) chains that were grafted simultaneously at the same reactive site along the PU backbone (PU-g-PDMA/PMMA), which were synthesized through the combination of polyaddition and the reversible-deactivation radical polymerization reactions. Highly stable [Bmim][PF 6 ]-in-benzene emulsions could be gained by adopting PU-g-PDMA/PMMA DBCs as macromolecular emulsifiers at a low content, such as 0.025 wt %. On the basis of the stability and the size of emulsion droplets, PU-g-PDMA/PMMA DBCs exhibited much better emulsifying performances than their analogues, including PU-g-PDMA, PU-g-PMMA, and PDMA-b-PMMA copolymers. Such excellent emulsifying performances of PU-g-PDMA/PMMA DBCs were due to high interfacial activities. PU-g-PDMA/PMMA DBCs exhibited higher capabilities in lowering the interfacial tension of the [Bmim][PF 6 ]−benzene interface than their analogues. A large energy barrier to desorption of adsorbed PU-g-PDMA/PMMA DBCs from the interface contributed to high stability of the [Bmim][PF 6 ]-in-benzene emulsion.
Responsive Pickering emulsions exhibit promising application in industry owing to the integration of the high storage stability with on-demand demulsification. In this study, stimuliresponsive Pickering emulsions stabilized by poly[oligo(ethylene glycol) methyl ether methacrylate] 15 -b-poly(diacetone acrylamide) 120 (E 15 D 120 ) worms were indicated, in which E 15 D 120 worms were prepared via reversible addition−fragmentation chain transfer-based aqueous dispersion polymerization using thermo-sensitive POEGMA 15 as both the stabilizer block and macro-chain transfer agent. The factors influencing the morphologies of copolymers during polymerization-induced self assembly have been investigated. A series of different morphological polymer nanoparticles including spheres, worms, and vesicles could be produced through rational synthesis. E 15 D 120 worms demonstrated excellent emulsifying performances and could be used as emulsifiers to form n-dodecane-in-water Pickering emulsions at a low content. The formed n-dodecane-in-water Pickering emulsions revealed a slow demulsification at pH 10 or 70 °C or pH 10/70 °C combinations, and several hours were needed for the demulsification of Pickering emulsions. However, n-dodecane-in-water Pickering emulsions displayed a rapid demulsification (∼10 min) at an elevated temperature, such as 90 °C. The different demulsification rates were attributed to different sensitivities of E 15 D 120 worms to external stimuli. Pickering emulsions integrating a rapid responsive demulsification with a slow one would be well satisfactory on different occasions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.