A new strain of Capsicum chlorosis virus (CaCV) from peanut (Arachis hypogaea L.) in China, designated CaCV-CP, was characterized. CaCV-CP causes yellow spots and necrosis on the leaves of affected peanut plants. Of 31 plant species inoculated mechanically, 24 were susceptible to this strain. Quasi-spherical virions were present in ultrathin section of diseased leaves. The complete sequence of S RNA of CaCV-CP consisted of 3399 nucleotides (nts). The NSs and N genes of the virus contained 1320 nts and 828 nts, respectively; these two open reading frames were in an ambisense arrangement. The N gene of CaCV-CP shared 84.7-86.4% and 92.4-93.1% identity with that of CaCV strains from Thailand and Australia at nt and amino acid levels, respectively (the GenBank accession number of the sequence reported in this study is DQ355974).
In recent years, outbreaks of leaf scald have been reported in two chewing cane clones “Guangdong Huangpi” and “Taoshang Guozhe” in Zhejiang province, China. From May to July 2019, we collected 11 and 13 leaf or stalk samples from symptomatic “Guangdong Huangpi” from four farms in Wenling and “Taoshang Guozhe” clones from three farms in Ruian, Zhejiang province, respectively. Leaves in young plants exhibited white pencil-line streaks (Supplement Fig. 1A & 1D) as well as partial or complete chlorosis of the leaf blade (Supplement Fig. 1B & 1E). Internal symptoms included an orange-red discoloration of the vascular bundles at the basal nodes of the stalk and discoloration extension into the internodes (Supplement Fig. 1C & 1F). Leaf and stalk tissues were used for bacterial isolation and purification on XAS medium, which is selective for Xanthomonas albilineans (Davis et al. 1994), using the streak plate method to obtain 24 isolates (Lin et al. 2018). Circular, convex, smooth, shiny and yellow colonies were isolated from all the samples. The pathogenicity of two isolates, XaCN30 from “Guangdong Huangpi” and XaCN43 from “Taoshang Guozhe”, was confirmed with Koch’s postulates according to the protocol reported by Lin et al. (2018). The incidences of diseased plants (56% and 63%) were observed in individual host clones at 28 d post-inoculation with isolates XaCN30 and XaCN43, respectively. Furthermore, all isolates were confirmed as X. albilineans via molecular methods. PCR amplification was conducted for all 24 isolates using the primer pairs XgyrB1F/XgyrB1R2 (Ntambo et al. 2019) and XAF1/XAR1 (Wang et al. 1999), which targeting the gyrB (encoding the b subunit of the DNA gyrase) and abc (encoding an ABC transporter) genes, and generating 904 bp and 608 bp amplicons, respectively. The PCR fragments were cloned into the pMD19-T vector (TaKaRa, Dalian, China). For each isolate, three single colonies of transformed Escherichia coli DH5α carrying targeted fragment were sequenced. These sequences were deposited into the GenBank with accession no. MT776053-MT776059 and MT776061-MT776077 for gyrB gene and MT776098-MT776104 and MT776106-MT776122 for abc gene. Based on the two concatenated DNA sequences of our 24 isolates, compared with 27 previously reported X. albilineans isolates obtained from the GenBank database, pairwise sequence identity analysis revealed that all 24 isolates from Zhejiang province had 99.4-100% identity with each other, 99.6-100% identity with 14 published domestic isolates, and 98.3-100% identity with 13 foreign isolates. Furthermore, phylogenetic analysis with MEGA 7.0 (Kumar et al. 2016) showed that the isolates from Zhejiang province clustered into two distinct groups (Supplement Fig. 2). One group consisted of 25 Chinese isolates (including all 11 isolates from Wenling) along with four isolates from the French West Indies (GPE PC73, GPE PC17, GPE PC86, and MTQ032), and one isolate from the USA (XaFL07-1), which were assigned to pulsed-field gel electrophoresis (PFGE) group B (Davis et al. 1997; Pieretti et al. 2012). A putative group was also proposed, which included all 13 isolates from Ruian, indicating that isolates from Ruian are distinct from the isolates isolated from other Chinese sugarcane-planting areas, including Wenling. We conclude that leaf scald disease in local clones of chewing cane are caused by X. albilineans in Zhejiang province in China, which will be helpful for leaf scald management in chewing cane, a cash crop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.