Stress exists ubiquitously and is critically important for the manufacturing industry. Due to the ultrasensitive mechanoresponse of the emission of 1,1,2,2,-tetrakis(4-nitrophenyl)ethane (TPE-4N), a luminogen with aggregation-induced emission characteristics, the visualization of stress/strain distributions on metal specimens with a pure organic fluorescent material is achieved. Such a fluorescence mapping method enjoys the merits of simple setup, real-time, full-field, on-site, and direct visualization. Surface analysis shows that TPE-4N can form a nonfluorescent, crystalline uniform film on the metal surface, which cracks into fluorescent amorphous fragments upon mechanical force. Therefore, the invisible information of the stress/strain distribution of the metal specimens are transformed to visible fluorescent signals, which generally matches well but provides more details than software simulation. Remarkably, fatigue crack propagation in stainless steel and aluminum alloy can be observed and predicted clearly, further demonstrating the ultrasensitivity and practicability of TPE-4N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.