Glacier variation is one of many indicators of climate change. Repeat measurements of the glacier terminus positions for selected glaciers in the central Himalaya document that they have been in a state of continuous retreat over the past few decades. Since the 1960s the average retreat rate on the north slope of Qomolangma (Mount Everest) is 5.5–9.5ma-1 and on Xixiabangma it is 4.0–5.2ma-1. Many glaciers on the south slope of the central Himalaya have been in retreat, and recently their retreat rate has accelerated. Ice-core studies show that the annual accumulation on these glaciers has fluctuated, but over the last century it has declined. It decreased rapidly in the 1960s and has remained consistently below the long-term mean thereafter. Meteorological station records indicate that the annual mean temperature in the region has slowly increased, particularly during the summer months. The strongest warming has occurred in the last 30 years. These data suggest that the current glacier retreat is due to the combined effect of reduced precipitation and warmer temperatures, and, if these conditions continue, the glaciers in the region will continue to shrink.
Based on observations of the equilibrium line altitude (ELA) of the Qiyi Glacier in the Qilian Mountain, we established a statistical model between ELA and its major influencing factors, warm season air temperature (air temperature averages for September, July and August) and cold season precipitation (total precipitation in the period January through March). Warm season air temperature was the leading climatic factor influencing ELA variations. The glacier ELA ascends (descends) 172 m when warm season air temperature increases (decreases) by 1°C, and ascends (descends) 62 m when cold season precipitation decreases (increases) by 10%. In the period 1958-2008, the glacier ELA showed a general increasing trend, ascending 230 m and reaching its highest altitude in 2006 at 5131 m a.s.l., close to the glacier summit. If future climate is similar to that in the period 2001-2008, the Qiyi Glacier will not stabilize until it retreats by 2.08 km.
QilianMountains, Qiyi Glacier, ELA, global warming Citation: Wang N L, He J Q, Pu J C, et al. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountain, over the past 50 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.