Zinc ion batteries (ZIBs) have been gradually developed in recent years due to their abundant resources, low cost, and environmental friendliness. Therefore, ZIBs have received a great deal of attention from researchers, which are considered as the next generation of portable energy storage systems. However, poor overall performance of ZIBs restricts their development, which is attributed to zinc dendrites and a series of side reactions. Constructing 3D zinc anodes has proven to be an effective way to significantly improve their electrochemical performance. In this review, the challenges of zinc anodes in ZIBs, including zinc dendrites, hydrogen evolution and corrosion, as well as passivation, are comprehensively summarized and the energy storage mechanisms of the zinc anodes and 3D zinc anodes are discussed. 3D zinc anodes with different structures including fiberous, porous, ridge‐like structures, plated zinc anodes on different substrates and other 3D zinc anodes, are subsequently discussed in detail. Finally, emerging opportunities and perspectives on the material design of 3D zinc anodes are highlighted and challenges that need to be solved in future practical applications are discussed, hopefully illuminating the way forward for the development of ZIBs.
Engineering heterogeneous composite electrodes consisting of multiple active components for meeting various electrochemical and structural demands have proven indispensable for significantly boosting the performance of lithium‐ion batteries (LIBs). Here, a novel design of ZnS/Sn heterostructures with rich phase boundaries concurrently encapsulated into hierarchical interconnected porous nitrogen‐doped carbon frameworks (ZnS/Sn@NPC) working as superior anode for LIBs, is showcased. These ZnS/Sn@NPC heterostructures with abundant heterointerfaces, a unique interconnected porous architecture, as well as a highly conductive N‐doped C matrix can provide plentiful Li+‐storage active sites, facilitate charge transfer, and reinforce the structural stability. Accordingly, the as‐fabricated ZnS/Sn@NPC anode for LIBs has achieved a high reversible capacity (769 mAh g−1, 150 cycles at 0.1 A g−1), high‐rate capability and long cycling stability (600 cycles, 645.3 mAh g−1 at 1 A g−1, 92.3% capacity retention). By integrating in situ/ex situ microscopic and spectroscopic characterizations with theoretical simulations, a multiscale and in‐depth fundamental understanding of underlying reaction mechanisms and origins of enhanced performance of ZnS/Sn@NPC is explicitly elucidated. Furthermore, a full cell assembled with prelithiated ZnS/Sn@NPC anode and LiFePO4 cathode displays superior rate and cycling performance. This work highlights the significance of chemical heterointerface engineering in rationally designing high‐performance electrodes for LIBs.
Developing high-performance bifunctional electrocatalysts towards hydrogen evolution/oxidation reaction (HER/HOR) holds great significance for efficiently utilizing hydrogen energy. In this work, a unique class of Mo-modified Ru nanosheet assemblies (Mo-Ru NSAs)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.