Highlights d Severe Na V 1.2 deficiency results in enhanced neuronal excitability in adult mice d Increased excitability is accompanied by a higher voltage threshold in striatal MSNs d Hyperexcitability related to Na V 1.2 deficiency is reversible and autonomous d Multiple K + channels, including K V 1.1, have a compensatory reduction in expression
Large‐scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage‐gated sodium channel isoform 1.2 (Nav1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/−) results in mild behavior abnormalities. The Nav1.2 expression level in Scn2a+/− mice is reported to be around 50–60% of the wild‐type (WT) level, which indicates that a close to 50% reduction of Nav1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene‐trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO) that can survive to adulthood, with about a quarter of Nav1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety‐like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix‐pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene‐trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.
With the wide adoption of genomic sequencing in children having seizures, an increasing number of SCN2A genetic variants have been revealed as genetic causes of epilepsy. Voltage-gated sodium channel Nav1.2, encoded by gene SCN2A, is predominantly expressed in the pyramidal excitatory neurons and supports action potential (AP) firing. One recurrent SCN2A genetic variant is L1342P, which was identified in multiple patients with epileptic encephalopathy and intractable seizures. However, the mechanism underlying L1342P-mediated seizures and the pharmacogenetics of this variant in human neurons remain unknown. To understand the core phenotypes of the L1342P variant in human neurons, we took advantage of a reference human-induced pluripotent stem cell (hiPSC) line from a male donor, in which L1342P was introduced by CRISPR/ Cas9-mediated genome editing. Using patch-clamping and microelectrode array (MEA) recordings, we revealed that cortical neurons derived from hiPSCs carrying heterozygous L1342P variant have significantly increased intrinsic excitability, higher sodium current density, and enhanced bursting and synchronous network firing, suggesting hyperexcitability phenotypes. Interestingly, L1342P neuronal culture displayed a degree of resistance to the anticonvulsant medication phenytoin, which recapitulated aspects of clinical observation of patients carrying the L1342P variant. In contrast, phrixotoxin-3 (PTx3), a Nav1.2 isoform-specific blocker, can potently alleviate spontaneous and chemically-induced hyperexcitability of neurons carrying the L1342P variant. Our results reveal a possible pathogenic underpinning of Nav1.2-L1342P mediated epileptic seizures and demonstrate the utility of genome-edited hiPSCs as an in vitro platform to advance personalized phenotyping and drug discovery.
With the wide adoption of whole-exome sequencing in children having seizures, an increasing number of SCN2A variants has been revealed as possible genetic causes of epilepsy. Voltage-gated sodium channel Nav1.2, encoded by gene SCN2A, is strongly expressed in the pyramidal excitatory neurons and supports action potential firing. One recurrent SCN2A variant is L1342P, which was identified in multiple patients with early-onset encephalopathy and intractable seizures. Our biophysical analysis and computational modeling predicted gain-of-function features of this epilepsy-associated Nav1.2 variant. However, the mechanism underlying L1342P mediated seizures and the pharmacogenetics of this variant in human neurons remain unknown. To understand the core phenotypes of the L1342P variant in human neurons, we took advantage of a reference human induced pluripotent stem cell (hiPSC) line, in which L1342P was engineered by CRISPR/Cas9 mediated genome-editing. Using patch-clamping and micro-electrode array (MEA) recording, we found that the cortical neurons derived from hiPSCs carrying heterozygous L1342P variant presented significantly increased intrinsic excitability, higher sodium current density, and enhanced bursting and synchronous network firing, showing clear hyperexcitability phenotypes. Interestingly, the L1342P neuronal culture displayed a degree of resistance to the anti-seizure medication (phenytoin), which likely recapitulated aspects of clinical observation of patients carrying the L1342P variant. In contrast, phrixotoxin-3 (PTx3), a Nav1.2 isoform-specific blocker, was able to potently alleviate spontaneous and chemical-induced hyperexcitability of neurons carrying the L1342P variant. Our results reveal a possible pathogenic underpinning of Nav1.2-L1342P mediated epileptic seizures, and demonstrate the utility of genome-edited hiPSCs as an in vitro platform to advance personalized phenotyping and drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.