Retinal artery/vein (A/V) classification is a critical technique for diagnosing diabetes and cardiovascular diseases. Although deep learning based methods achieve impressive results in A/V classification, the performance usually degrades when directly apply the models that trained on one dataset to another set, due to the domain shift, e.g., caused by the variations in imaging protocols. In this paper, we propose a novel method to improve cross-domain generalization for pixel-wise retinal A/V classification. That is, vessel-mixing based consistency regularization, which regularizes the models to give consistent posterior distributions for vessel-mixing samples. The proposed method achieves the state-of-the-art performance on extensive experiments for cross-domain A/V classification, which is even close to the performance of fully supervised learning on target domain in some cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.