Colonic mucosal barrier dysfunction is one of the major causes of inflammatory bowel disease (IBD). However, the mechanisms underlying mucosal barrier dysfunction are poorly understood. N 6 -methyladenosine (m 6 A) mRNA modification is an important modulator of epitranscriptional regulation of gene expression, participating in multiple physiological and pathological processes. However, the function of m 6 A modification in colonic epithelial cells and stem cells is unknown. Here, we show that m 6 A modification is essential for maintaining the homeostatic self-renewal in colonic stem cells. Specific deletion of the methyltransferase 14 ( Mettl14 ) gene in mouse colon resulted in colonic stem cell apoptosis, causing mucosal barrier dysfunction and severe colitis. Mechanistically, we revealed that Mettl14 restricted colonic epithelial cell death by regulating the stability of Nfkbia mRNA and modulating the NF-κB pathway. Our results identified a previously unidentified role for m 6 A modification in colonic epithelial cells and stem cells, suggesting that m 6 A modification may be a potential therapeutic target for IBD.
Electroacupuncture (EA) could improve the hyperactivity of the hypothalamus pituitary adrenal (HPA) axis induced by hepatectomy. However, its underlying mechanism still remains largely unclear. Here, we found that hypothalamic corticotrophin releasing hormone (CRH) modulates the function of the HPA axis, while hepatectomy induced an HPA axis disorder and EA application could regulate the hypothalamic CRH. We first demonstrated that microRNAs (miRNAs) target on CRH via bioinformatics analysis and screened them in the primary hypothalamic neurons. MicroR-142 (miR-142) and miR-376c were identified to inhibit CRH at the mRNA and protein levels, and a dual luciferase reporter assay confirmed their binding to the 3′-untranslated regions (3′-UTR) of CRH. Further analyses revealed a decrease in hypothalamic miR-142 expression in the hepatectomy rats and an increase in miR-142 and miR-376c after EA intervention. Importantly, the improvement effect of EA on the HPA axis regulatory function in hepatectomy rats was blocked by miR-142 antagomir. Our findings illustrated that EA could up-regulate hypothalamic miR-142 expression and decrease the CRH level to alleviate the hyperactivity of the HPA axis induced by hepatectomy.
Cisplatin is a widely used chemotherapeutic drug in the treatment of various solid tumors. However, the cisplatin-induced acute kidney injury remains a disturbing complication, which still lacks effective prevention. Cisplatin-induced oxidative damage and mitochondrial dysfunction are anticipated to be crucial in the occurrence of kidney injury. Astragalus polysaccharide (APS) has been reported to possess multiple biological activities including anti-inflammatory, antioxidant, and mitochondria protection. In this study, we investigated the potentially protective effect of APS against cisplatin-induced kidney injury both in vivo and in vitro. We found that APS pretreatment attenuated the cisplatin-induced renal dysfunction and histopathological damage in mice; in addition, it also protected the viability of HK-2 cells upon cisplatin exposure. APS attenuated the cisplatin-induced oxidative damage by reducing reactive oxygen species (ROS) generation and recovering the activities of total superoxide dismutase and glutathione peroxidase in mice kidney. In addition, electron microscope analysis indicated that cisplatin induced extensive mitochondrial vacuolization in mice kidney. However, APS administration reversed these mitochondrial morphology changes. In HK-2 cells, APS reduced the cisplatin-induced mitochondrial and intracellular ROS generation. Furthermore, APS protected the normal morphology of mitochondria, blocked the cisplatin-induced mitochondrial permeability transition pore opening, and reduced the cytochrome c leakage. Subsequently, APS reduced the cisplatin-induced apoptosis in mice renal and HK-2 cells. In conclusion, our data suggested that APS pretreatment might prevent cisplatin-induced kidney injury through attenuating oxidative damage, protecting mitochondria, and ameliorating mitochondrial-mediated apoptosis.
Glomerulonephritis is the one of the major causes of the end‐stage kidney disease, whereas the pathological process of glomerulonephritis is still not completely understood. Single‐cell RNA sequencing (scRNA‐seq) emerges to be a powerful tool to evaluate the full heterogeneity of kidney diseases. To reveal cellular gene expression profiles of glomerulonephritis, we performed scRNA‐seq of 2 human kidney transplantation donor samples, 4 human glomerulonephritis samples, 1 human malignant hypertension (MH) sample and 1 human chronic interstitial nephritis (CIN) sample, all tissues were taken from the biopsy. After filtering the cells with < 200 genes and > 10% mitochondria (MT) genes, the resulting 14 932 cells can be divided into 20 cell clusters, consistently with the previous report, in disease samples dramatic immune cells infiltration was found, among which a proximal tubule (PT) subset characterized by wnt‐β catenin activation and a natural killer T (NKT) subset high expressing LTB were found. Furthermore, in the cluster of the podocyte, three glomerulonephritis related genes named FXYD5, CD74 and B2M were found. Compared with the mesangial of donor, the gene CLIC1 and RPS26 were up‐regulated in mesangial of IgA nephropathy(IgAN), whereas the gene JUNB was up‐regulated in podocyte of IgAN in comparison with that of donor. Meanwhile, some membranous nephropathy (MN) high expressed genes such as HLA‐DRB5, HLA‐DQA2, IFNG, CCL2 and NR4A2, which involve in highest enrichment pathway, display the cellular‐specific expression style, whereas monocyte marker of lupus nephritis (LN) named TNFSF13B was also found and interferon alpha/beta signalling pathway was enriched in B and NKT of LN comparing with donor. By scRNA‐seq, we first defined the podocyte markers of glomerulonephritis and specific markers in IgA, MN and LN were found at cellular level. Furthermore, the critical role of interferon alpha/beta signalling pathway was enriched in B and NKT of LN was declared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.