Passive solar vapor generation represents a promising and environmentally benign method of water purification/desalination. However, conventional solar steam generation techniques usually rely on costly and cumbersome optical concentration systems and have relatively low efficiency due to bulk heating of the entire liquid volume. Here, an efficient strategy using extremely low‐cost materials, i.e., carbon black (powder), hydrophilic porous paper, and expanded polystyrene foam is reported. Due to the excellent thermal insulation between the surface liquid and the bulk volume of the water and the suppressed radiative and convective losses from the absorber surface to the adjacent heated vapor, a record thermal efficiency of ≈88% is obtained under 1 sun without concentration, corresponding to the evaporation rate of 1.28 kg (m2 h)−1. When scaled up to a 100 cm2 array in a portable solar water still system and placed in an outdoor environment, the freshwater generation rate is 2.4 times of that of a leading commercial product. By simultaneously addressing both the need for high‐efficiency operation as well as production cost limitations, this system can provide an approach for individuals to purify water for personal needs, which is particularly suitable for undeveloped regions with limited/no access to electricity.
Abstract100% efficiency is the ultimate goal for all energy harvesting and conversion applications. However, no energy conversion process is reported to reach this ideal limit before. Here, an example with near perfect energy conversion efficiency in the process of solar vapor generation below room temperature is reported. Remarkably, when the operational temperature of the system is below that of the surroundings (i.e., under low density solar illumination), the total vapor generation rate is higher than the upper limit that can be produced by the input solar energy because of extra energy taken from the warmer environment. Experimental results are provided to validate this intriguing strategy under 1 sun illumination. The best measured rate is ≈2.20 kg m−2 h−1 under 1 sun illumination, well beyond its corresponding upper limit of 1.68 kg m−2 h−1 and is even faster than the one reported by other systems under 2 sun illumination.
A fundamental strategy is developed to enhance the light-matter interaction of ultra-thin films based on a strong interference effect in planar nanocavities, and overcome the limitation between the optical absorption and film thickness of energy harvesting/conversion materials. This principle is quite general and is applied to explore the spectrally tunable absorption enhancement of various ultra-thin absorptive materials including 2D atomic monolayers.
nanoporous lithography methods, [18][19][20][21] etc. However, these techniques are still expensive and complicated for the fabrication of high quality SERS substrates over large areas, thus resulting in high prices for commercial SERS substrates. Furthermore, most commercial SERS substrates can only work for individual excitation wavelengths, i.e., one particular product works at one or two excitation wavelengths only. [22][23][24][25][26][27][28] When one wants to identify anonymous trace molecules or mixed samples, multiple excitation wavelengths will be required. [29][30][31] In this case, different substrates have to be used for different wavelength excitation, which consumes more biological/chemical materials, substrates, and measurement time. This is an obvious disadvantage for conventional SERS substrates. On the contrary, the SERS EF is proportional to the product of the fi eld intensity enhancements at both excitation and Raman scattering wavelengths. It was predicted that the maximum SERS enhancement can be achieved when localized surface plasmon resonance is located between the excitation and Raman scattering wavelengths. [ 32 ] To realize higher EF, double-resonance SERS substrates were proposed to realize strong enhancements for excitation and Raman scattered signals simultaneously using expensive e-beam lithography processes. [ 23 ] Due to the narrowband absorption spectra for both resonant bands, the enhanced SERS signal is still limited within narrow spectral regions. To address this problem, broadband resonant nanostructures are highly desired. For instance, a relatively broadband 1D metal-dielectric-metal metasurface (i.e., ≈70% optical absorption from 420 to 550 nm) was fabricated using e-beam lithography to realize uniform enhancement for SERS sensing. [ 24 ] However, the top-down lithography technique imposed a signifi cant fabrication cost barrier for large-scale practical applications. In addition, 1D grating structures are polarization dependent which can only work for given polarization states (usually transverse magnetic polarization). To overcome these limitations, here we report an ultrabroadband super absorbing metasurface substrate that can enhance the SERS signal for excitation wavelengths in a broad spectral region using lithography-free processes. [ 33 ] Most frequently used excitation wavelengths for SERS (e.g., from 450 to 1100 nm [23][24][25][26][27][28]34 ] are all covered due to the broadband light trapping and fi eld concentration within deep subwavelength Most reported surface-enhanced Raman spectroscopy (SERS) substrates can work for individual excitation wavelengths only. Therefore, different substrates have to be used for different excitation wavelengths, which consumes more biological/chemical materials, substrates, and measurement time. Here, an ultrabroadband super absorbing metasurface that can work as a universal substrate for low cost and high performance SERS sensing is reported. Due to broadband light trapping and localized fi eld enhancement, this structure can...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.