The bending and twisting of DNA origami structures are important features for controlling the physical properties of DNA nanodevices. It has not been fully explored yet how to finely tune the bending and twisting of curved DNA structures. Traditional tuning of the curved DNA structures was limited to controlling the in-plane-bending angle through varying the numbers of base pairs of deletions and insertions. Here, we developed two tuning strategies of curved DNA origami structures from in silico and in vitro aspects. In silico, the out-of-plane bending and twisting angles of curved structures were introduced, and were tuned through varying the patterns of base pair deletions and insertions. In vitro, a chemical adduct (ethidium bromide) was applied to dynamically tune a curved spiral. The 3D structural conformations, like chirality, of the curved DNA structures were finely tuned through these two strategies. The simulation and TEM results demonstrated that the patterns of base pair insertions and deletions and chemical adducts could effectively tune the bending and twisting of curved DNA origami structures. These strategies expand the programmable accuracy of curved DNA origami structures and have potential in building efficient dynamic functional nanodevices.
AbstractIn nature, allostery is the principal approach for regulating cellular processes and pathways. Inspired by nature, structure-switching aptamer-based nanodevices are widely used in artificial biotechnologies. However, the canonical aptamer structures in the nanodevices usually adopt a duplex form, which limits the flexibility and controllability. Here, a new regulating strategy based on a clamp-like triplex aptamer structure (CLTAS) was proposed for switching DNA polymerase activity via conformational changes. It was demonstrated that the polymerase activity could be regulated by either adjusting structure parameters or dynamic reactions including strand displacement or enzymatic digestion. Compared with the duplex aptamer structure, the CLTAS possesses programmability, excellent affinity and high discrimination efficiency. The CLTAS was successfully applied to distinguish single-base mismatches. The strategy expands the application scope of triplex structures and shows potential in biosensing and programmable nanomachines.
In this work, an anti-icing structured surface was fabricated by combining laser ablation with hydrothermal treatment. A micro-patterned surface on a Ti alloy (TC4) substrate was easily fabricated by a highly effective nanosecond pulsed laser ablation. It was observed that titania (TiO2) nanostructures were formed by hydrothermal treatment in aqueous alkali on the laser ablated TC4 substrate to obtain the micro/nano-hierarchical structures. The growth mechanism of the tunable nanoarrays was discussed by the adjustment of hydrothermal temperature. The as-prepared samples exhibited excellent superhydrophobicity with contact angles greater than 160°. It was found that optimized hydrothermal treatment on laser-processed TC4 substrates could further enhance surface anti-icing property. The results showed that the delay time (DT) had been extended by achieving over 90 min for the water droplets to freeze on the as-prepared structured surfaces, providing great potential in various anti-icing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.