Breast cancer is a common gynecological disease that poses a great threat to women health due to its high malignant rate. Breast cancer screening tests are used to find any warning signs or symptoms for early detection and currently, Ultrasound screening is the preferred method for breast cancer diagnosis. The localization and segmentation of the lesions in breast ultrasound (BUS) images are helpful for clinical diagnosis of the disease. In this paper, an RDAU-NET (Residual-Dilated-Attention-Gate-UNet) model is proposed and employed to segment the tumors in BUS images. The model is based on the conventional U-Net, but the plain neural units are replaced with residual units to enhance the edge information and overcome the network performance degradation problem associated with deep networks. To increase the receptive field and acquire more characteristic information, dilated convolutions were used to process the feature maps obtained from the encoder stages. The traditional cropping and copying between the encoder-decoder pipelines were replaced by the Attention Gate modules which enhanced the learning capabilities through suppression of background information. The model, when tested with BUS images with benign and malignant tumor presented excellent segmentation results as compared to other Deep Networks. A variety of quantitative indicators including Accuracy, Dice coefficient, AUC(Area-Under-Curve), Precision, Sensitivity, Specificity, Recall, F1score and M-IOU (Mean-Intersection-Over-Union) provided performances above 80%. The experimental results illustrate that the proposed RDAU-NET model can accurately segment breast lesions when compared to other deep learning models and thus has a good prospect for clinical diagnosis.
This paper proposes a new supervised method for blood vessel segmentation using Zernike moment-based shape descriptors. The method implements a pixel wise classification by computing a 11-D feature vector comprising of both statistical (gray-level) features and shape-based (Zernike moment) features. Also the feature set contains optimal coefficients of the Zernike Moments which were derived based on the maximum differentiability between the blood vessel and background pixels. A manually selected training points obtained from the training set of the DRIVE dataset, covering all possible manifestations were used for training the ANN-based binary classifier. The method was evaluated on unknown test samples of DRIVE and STARE databases and returned accuracies of 0.945 and 0.9486 respectively, outperforming other existing supervised learning methods. Further, the segmented outputs were able to cover thinner blood vessels better than previous methods, aiding in early detection of pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.