Aiming at the related problems existing in the field of leisure sports computing, in order to study the behavior recognition of leisure sports by deep residual network, based on the deep residual neural network theory, the behavior recognition algorithm and the corresponding robust model are used to analyze the leisure sports related samples, and the correlation model is used to predict and analyze the leisure sports related content. The results show that the change curves of Sig and Tanh functions can be divided into slow increasing stage, linear increasing stage, and stable stage. The y value corresponding to ReLU curve shows a linear change trend with the increase of x value. The Leaky function’s corresponding curve can be divided into two stages. The function coincides with the ReLU function in the first quadrant and remains linear in the third quadrant. The activation function curves corresponding to layers 56 and 20 have a relatively large variation range, and both of them show an overall trend of gradual decline. On the whole, the curve value corresponding to layer 56 is higher than that corresponding to layer 20, indicating that the method of layer 20 is relatively good and the corresponding training error is relatively low. It can be seen from the robustness recognition rate of various methods under different training samples that Fl has the highest overall data recognition rate while Sc has relatively poor stability. However, the recognition rate of IDCC and DCC shows a relatively flat trend, indicating that these two methods have certain advantages in describing the robust recognition rate. The research results can provide theoretical support for the application of deep residual neural networks in other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.