Liquid-liquid phase separation (LLPS) of biomolecules drives the formation of subcellular compartments with distinct physicochemical properties. These compartments, free of lipid bilayers and therefore called membraneless organelles, include nucleoli, centrosomes, heterochromatin, and centromeres. These have emerged as a new paradigm to account for subcellular organization and cell fate decisions. Here we summarize recent studies linking LLPS to mitotic spindle, heterochromatin, and centromere assembly and their plasticity controls in the context of the cell division cycle, highlighting a functional role for phase behavior and material properties of proteins assembled onto heterochromatin, centromeres, and central spindles via LLPS. The techniques and tools for visualizing and harnessing membraneless organelle dynamics and plasticity in mitosis are also discussed, as is the potential for these discoveries to promote new research directions for investigating chromosome dynamics, plasticity, and inter-chromosome interactions in the decision-making process during mitosis.
During mitosis, the parent cell distributes its genetic materials equally into two daughter cells through chromosome segregation, a complex movements orchestrated by mitotic kinases and its effector proteins. Faithful chromosome segregation and cytokinesis ensure that each daughter cell receives a full copy of genetic materials of parent cell. Defects in these processes can lead to aneuploidy or polyploidy. Aurora/Ipl1p family, a class of conserved serine/threonine kinases, plays key roles in chromosome segregation and cytokinesis. This article highlights the function and regulation of Aurora/Ipl1p family in mitosis and provides potential links between aberrant regulation of Aurora/Ipl1p kinases and pathogenesis of human cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.