Accurate estimations of the temperature and the state-of-charge (SOC) are of extreme importance for the safety of lithium-ion battery operation. Traditional battery temperature and SOC estimation methods often omit the relation between battery temperature and SOC, which may lead to significant errors in the estimations. This study presents a coupled electrothermal battery model and a coestimation method for simultaneously estimating the temperature and SOC of lithium-ion batteries. The coestimation method is performed by a coupled model-based dual extended Kalman filter (DEKF). The coupled estimators utilizing electrochemical impedance spectroscopy (EIS) measurements, rather than utilizing direct battery surface measurements, are adopted to estimate the battery temperature and SOC, respectively. The information being exchanged between the temperature estimator and the SOC estimator effectively improves the estimation accuracy. Extensive experiments show that, in contrast with the EKF-based separate estimation method, the DEKF-based coestimation method is more favorable in reducing errors for estimating both the temperature and SOC even if the battery core temperature has increased by 17°C or more during the process of test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.