Binding to the host cell receptors, CD4 and CCR5/CXCR4, triggers large-scale conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer [(gp120/gp41)3] that promote virus entry into the cell. CD4-mimetic compounds (CD4mcs) comprise small organic molecules that bind in the highly conserved CD4-binding site of gp120 and prematurely induce inactivating Env conformational changes, including shedding of gp120 from the Env trimer. By inducing more open, antibody-susceptible Env conformations, CD4mcs also sensitize HIV-1 virions to neutralization by antibodies and infected cells to antibody-dependent cellular cytotoxicity (ADCC). Here, we report the design, synthesis and evaluation of novel CD4mcs based on an indoline scaffold. Compared with our current lead indane scaffold CD4mc, BNM-III-170, several indoline CD4mcs exhibit increased potency and breadth against HIV-1 variants from different geographic clades. Viruses that were selected for resistance to the lead indane CD4mc, BNM-III-170, are susceptible to inhibition by the indoline CD4mcs. The indoline CD4mcs also potently sensitize HIV-1-infected cells to ADCC mediated by plasma from HIV-1-infected individuals. Crystal structures indicate that the indoline CD4mcs gain potency compared to the indane CD4mcs through more favorable pi-pi overlap from the indoline pose and by making favorable contacts with the vestibule of the CD4-binding pocket on gp120. The rational design of indoline CD4mcs thus holds promise for further improvements in antiviral activity, potentially contributing to efforts to treat and prevent HIV-1 infection.
The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high-resolution X-ray structures of some segments of the MPR were solved in the past, they represent the postfusion forms. Structural information on the TM domain of gp41 is scant and at low resolution. Here we describe the design, expression and purification of a protein construct that includes MPR and the transmembrane domain of gp41 (MPR-TM TEV-6His ), which reacts with the broadly neutralizing antibodies 2F5 and 4E10 and thereby may represent an immunologically relevant conformation mimicking a prehairpin intermediate of gp41. The expression level of MPR-TM TEV-6His was improved by fusion to the C-terminus of Mistic protein, yielding~1 mg of pure protein per liter. The isolated MPR-TM TEV-6His protein was biophysically characterized and is a monodisperse candidate for crystallization. This work will enable further investigation into the structure of MPR-TM TEV-6His , which will be important for the structure-based design of a mucosal vaccine against HIV-1.
In order to investigate function of carrier behavior on gas-sensing properties, tin oxide-based films with different carrier concentration and mobility were obtained, by magnetron sputtering from the powder target, which was followed by further oxygen-management though the annealing treatment. The microstructure, surface morphology, electrical properties and gas sensitivity were characterized by XRD, Raman spectrum, photoluminescence spectrum, atomic force microscope, the hall effect system and electrochemical workstation, respectively. The results showed that all SnO2-based films had a tetragonal rutile phase with (101) preferred orientation. The introduction of fluorine and regulation of oxygen vacancies tuned carrier concentration from 1015/cm3 to 1021/cm3 and mobility from 102 cm2/V·s to 10−1 cm2/V·s. The decreasing carrier concentration as well as increasing mobility had a positively important function to improve the sensitivity of SnO2-based films. The air-annealed SnO2 film with lowest carrier concentration had a maximum sensitivity of R = 5.0, while vacuum-annealed SnO2:F film with the highest carrier concentration being the minimum sensitivity. This puts forward a novel reference for the design and application of SnO2-based gas sensing films.
A family of leucine-rich-repeat-containing G-protein-coupled receptors (LGRs) mediate diverse physiological responses when complexed with their cognate ligands. LGRs are present in all metazoan animals. In humans, the LGR ligands include glycoprotein hormones (GPHs) chorionic gonadotropin (hCG), luteinizing hormone, follicle-stimulating hormone (hFSH), and thyroid-stimulating hormone (hTSH). These hormones are αβ heterodimers of cystine-knot protein chains. LGRs and their ligand chains have coevolved. Ancestral hormone homologs, present in both bilaterian animals and chordates, are identified as α2β5. We have used single-wavelength anomalous diffraction and molecular replacement to determine structures of the α2β5 hormone from Caenorhabditis elegans ( Ce α2β5). Ce α2β5 is unglycosylated, as are many other α2β5 hormones. Both Hs α2β5, the human homolog of Ce α2β5, and hTSH activate the same receptor (hTSHR). Despite having little sequence similarity to vertebrate GPHs, apart from the cysteine patterns from core disulfide bridges, Ce α2β5 is generally similar in structure to these counterparts; however, its α2 and β5 subunits are more symmetric as compared with α and β of hCG and hFSH. This quasisymmetry suggests a hypothetical homodimeric antecedent of the α2β5 and αβ heterodimers. Known structures together with AlphaFold models from the sequences for other LGR ligands provide representatives for the molecular evolution of LGR ligands from early metazoans through the present-day GPHs. The experimental Ce α2β5 structure validates its AlphaFold model, and thus also that for Hs α2β5; and interfacial characteristics in a model for the Hs α2β5:hTSHR complex are similar to those found in an experimental hTSH:hTSHR structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.