Patchoulol, a natural sesquiterpene compound, is widely used in perfumes and cosmetics. Several strategies were adopted to enhance patchoulol production in Saccharomyces cerevisiae: (i) farnesyl pyrophosphate (FPP) synthase and patchoulol synthase were fused to increase the utilization of FPP precursor; (ii) expression of the limiting genes of the mevalonate pathway was enhanced; (iii) squalene synthase was weakened by a glucose-inducible promoter of HXT1 (promoter for hexose transporter) to reduce metabolic flux from FPP to ergosterol; and (iv) farnesol biosynthesis was inhibited to decrease the consumption of FPP. Glucose was used to balance the trade-off between the competitive squalene and patchoulol pathways. The patchoulol production was 59.2 ± 0.7 mg/L in a shaken flask with a final production of 466.8 ± 12.3 mg/L (20.5 ± 0.5 mg/g dry cell weight) combined with fermentation optimization, which was 7.8-fold higher than the reported maximum production. The work significantly promoted the industrialization process of patchoulol production using biobased microbial platforms.
In this study, we focused on the applicability of CRISPR/Cpf1 in genome simplification of Saccharomyces cerevisiae and established a CRISPR/Cpf1 assisted method for rapid markerless large fragment deletion to facilitate laboratory evolution of geome of S. cerevisiae by rational genetic engineering. This method uses a Cpf1 expression plasmid and a crRNA array expression plasmid. The DNA fragment between two DSBs generated by CRISPR/Cpf1 can be cut off from the chromosome, along with re-ligation of the genomic endpoints of the DSBs. Using this method, the large DNA fragment of ∼38 kb between the two genes of TRM10 and REX4 was successfully and rapidly deleted, which was verified by PCR and Sanger DNA Sequencing. This method is simple and rapid, and can be easily implemented for large fragment deletion in S. cerevisiae.
Background: Saccharomyces cerevisiae is one of the most important industrial microorganisms. A robust genome editing tool is vital for both fundamental research and applications. To save the time and labor consumed in the procedure of genome editing, a self-cloning CRISPR/Cpf1 system (scCRISPR/Cpf1), in which a self-cleaving plasmid and PCR-generated site-specific crRNA fragment were included, was developed. Results: Using scCRISPR/Cpf1 as the genetic tool, simple and fast singleplex and multiplex genomic integration of in vivo assembled DNA parts were investigated. Moreover, we validate the applicability of scCRISPR/Cpf1 for cell factory development by creating a patchoulol production strain through two rounds of iterative genomic integration. The results showed that scCRISPR/Cpf1 enables singleplex and tripleplex genomic integration of in vivo assembled DNA parts with efficiencies of 80 and 32%, respectively. Furthermore, the patchoulol production strain was successfully and rapidly engineered and optimized through two rounds of iterative genomic integration by scCRISPR/Cpf1. Conclusions: scCRISPR/Cpf1 allows for CRISPR/Cpf1-facilitated genome editing by circumventing the step to clone a site-specific crRNA plasmid without compromising efficiency in S. cerevisiae. This method enriches the current set of tools available for strain engineering in S. cerevisiae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.