Background: Ultrasound-triggered sonodynamic therapy (SDT), as a non-invasive approach, has attracted considerable attention in a wide variety of malignant tumors and other diseases. Over the past 2 decades, the number of scientific publications on SDT has increased rapidly. However, there is still a lack of one comprehensive report that summarizes the global research trends and knowledge landscapes in the field of SDT in detail. Thus, we performed a bibliometric analysis on SDT from 2000 to 2021 to track the current hotspots and highlight future directions.Methods: We collected publications on SDT research from the Web of Science Core Collection database. The annual number of publications and citations, major contributors, popular journals, international collaborations, co-cited references and co-occurrence keywords were analyzed and visualized with CiteSpace, VOSviewer, and R-bibliometrix.Results: A total of 701 publications were included. The annual publication output increased from 5 in 2000 to 175 in 2021, and the average growth rate was 18.4%. China was the most productive country with 463 documents (66.05%), and Harbin Medical University was the most prolific institution (N = 73). Ultrasound in Medicine and Biology published the most papers related to SDT. Materials Science, and Chemistry were the research areas receiving the most interest. All the keywords were divided into four different clusters including studies on mechanisms, studies on drug delivery and nanoparticles, studies on cancer therapy, as well as studies on ultrasound and sonosensitizers. In addition to nanomaterials-related studies including nanoparticles, mesoporous silica nanoparticles, nanosheets, liposomes, microbubble and TiO2 nanoparticle, the following research directions such as immunogenic cell death, metal-organic framework, photothermal therapy, hypoxia, tumor microenvironment, chemodynamic therapy, combination therapy, tumor resistance, intensity focused ultrasound, drug delivery, and Staphylococcus aureus also deserve further attention and may continue to explode in the future.Conclusion: SDT has a bright future in the field of cancer treatment, and nanomaterials have increasingly influenced the SDT field with the development of nano-technology. Overall, this comprehensive bibliometric study was the first attempt to analyze the field of SDT, which could provide valuable references for later researchers to better understand the global research trends, hotspots and frontiers in this domain.
Despite the growing number of studies exhibiting an association of diabetes mellitus (DM) and lung cancer progression, the concrete mechanism of DM aggravating lung cancer has not been elucidated. The present study was to investigate whether and how high glucose (HG) contributes to the proliferation and migration of non-small-cell lung cancer (NSCLC) cells in vitro. In the present study, we confirmed that HG promoted the proliferation and migration of NSCLC cells, and also induced an anti-apoptotic effect on NSCLC cells. Moreover, HG inhibited the expression of growth arrest-specific 5 (GAS5) in NSCLC cells but elevated the protein level of tribbles homolog 3 (TRIB3). GAS5 overexpression promoted the degradation of TRIB3 protein by ubiquitination and inhibited the HG-induced proliferation, anti-apoptosis, and migration of NSCLC cells. Importantly, TRIB3 overexpression reversed the effects of GAS5 on the HG-treated NSCLC cells. Taken together, down-regulated GAS5 by HG significantly enhanced the proliferation, anti-apoptosis, and migration in NSCLC cells through TRIB3, thus promoting the carcinogenesis of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.