Background
Affinity prediction between molecule and protein is an important step of virtual screening, which is usually called drug-target affinity (DTA) prediction. Its accuracy directly influences the progress of drug development. Sequence-based drug-target affinity prediction can predict the affinity according to protein sequence, which is fast and can be applied to large datasets. However, due to the lack of protein structure information, the accuracy needs to be improved.
Results
The proposed model which is called WGNN-DTA can be competent in drug-target affinity (DTA) and compound-protein interaction (CPI) prediction tasks. Various experiments are designed to verify the performance of the proposed method in different scenarios, which proves that WGNN-DTA has the advantages of simplicity and high accuracy. Moreover, because it does not need complex steps such as multiple sequence alignment (MSA), it has fast execution speed, and can be suitable for the screening of large databases.
Conclusion
We construct protein and molecular graphs through sequence and SMILES that can effectively reflect their structures. To utilize the detail contact information of protein, graph neural network is used to extract features and predict the binding affinity based on the graphs, which is called weighted graph neural networks drug-target affinity predictor (WGNN-DTA). The proposed method has the advantages of simplicity and high accuracy.
In the process of drug discovery, identifying the interaction between the protein and the novel compound plays an important role. With the development of technology, deep learning methods have shown excellent performance in various situations. However, the compound–protein interaction is complicated and the features extracted by most deep models are not comprehensive, which limits the performance to a certain extent. In this paper, we proposed a multiscale convolutional network that extracted the local and global features of the protein and the topological feature of the compound using different types of convolutional networks. The results showed that our model obtained the best performance compared with the existing deep learning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.