The radial conjugated π‐system of cycloparaphenylenes (CPPs) makes them intriguing fluorophores and unique supramolecular hosts. However, the bright photoluminescence (PL) of CPPs was limited to the blue light and the supramolecular assembly behavior of large CPPs was rarely investigated. Here we present the synthesis of tetra‐benzothiadiazole‐based [12]cycloparaphenylene (TB[12]CPP), which exhibits a lime to orange PL with an excellent quantum yield up to 82 % in solution. The PL quantum yield of TB[12]CPP can be further improved to 98 % in polymer matrix. Benefiting from its enlarged size, TB[12]CPP can accommodate a fullerene derivative or concave–convex complexes of fullerene and buckybowl through the combined π–π and C−H⋅⋅⋅π interactions. The latter demonstrates the first case of a ternary supramolecule of CPPs.
The bottom-up approach through on-surface synthesis of porous graphene nanoribbons (GNRs) presents a controllable manner for implanting periodic nanostructures to tune the electronic properties of GNRs in addition to bandgap engineering by width and edge configurations. However, owing to the existing steric hindrance in small pores like divacancies, it is still difficult to embed periodic divacancies with a nonplanar configuration into GNRs. Here, we demonstrate the on-surface synthesis of atomically precise eight-carbon-wide armchair GNRs embedded with periodic divacancies (DV8-aGNRs) by utilizing the monatomic step edges on the Au(111) surface. From a single molecular precursor correspondingly following a trans-and ciscoupling, the DV8-aGNR and another porous nanographene are respectively formed at step edges and on terraces at 720 and 570 K. Combining scanning tunneling microscopy/spectroscopy, atomic force microscopy, and first-principles calculations, we determine the out-of-plane conformation, wide bandgap (∼3.36 eV), and wiggly shaped frontier orbitals of the DV8-aGNR. Nudged elastic band calculations further quantitatively reveal that the additional steric hindrance effect in the cyclodehydrogenative reactions has a higher barrier of 1.3 eV than that in the planar porous nanographene, which also unveils the important role played by the monatomic Au step and adatoms in reducing the energy barriers and enhancing the thermodynamic preference of the oxidative cyclodehydrogenation. Our results provide the first case of GNRs containing periodic pores as small as divacancies with a nonplanar configuration and demonstrate the strategy by utilizing the chemical heterogeneity of a substrate to promote the formation of novel carbon nanomaterials.
The synthesis of well-defined nanocarbon multilayers, beyond the bilayer structure, is still a challenging goal. Herein, two trilayer nanographenes were synthesized by covalently linking nanographene layers through helicene bridges. The structural characterization of the trilayer nanographenes revealed a compact trilayer-stacked architecture. The introduction of a furan ring into the helicene linker modulates the interlayer overlap and π-conjugation of the trilayer nanographenes, enabling the tuning of the interlayer coupling, as demonstrated by optical, electrochemical, and theoretical analyses. Both synthesized trilayer nanographenes are rigid chiral nanocarbons and show a chirality transfer from the helicene moiety to the stacked nanographene layers. These helical trilayer nanographenes reported here represent the covalently linked multilayer nanographenes rather than bilayer ones, showing the tunable multilayer stacking structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.