Primary hypertrophic osteoarthropathy (PHO) is a rare inherited disease caused by genetic defects in the prostaglandin metabolism pathway; disturbed prostaglandin E (PGE ) catabolism resulting in increased PGE level is suggested in the pathogenesis. Forty-three Han Chinese patients with PHO were studied and 41 of them were treated. Mutations in the HPGD gene, causing hypertrophic osteoarthropathy, primary, autosomal recessive 1 (PHOAR1; OMIM 259100), were identified in seven patients, and mutations in the SLCO2A1 gene, causing hypertrophic osteoarthropathy, primary, autosomal recessive 2 (PHOAR2; OMIM 614441), were identified in 36 patients. Clinical phenotypes of PHO varied, ranging from mild isolated finger clubbing to severe pachydermia and disabling joint swelling, even within families. Circulating PGE metabolism features of PHOAR2 were different from those of PHOAR1. Different frequency and severity of pachydermia between the subgroups were also indicated. A percentage of PHOAR2 patients suffered from gastrointestinal hemorrhage, but this symptom was not observed in the PHOAR1 subgroup. Clinical evidence highlighted the essential role of sex hormones in prostaglandin transporter regulation with respect to PHOAR2 onset, although no significant associations of urinary PGE or PGE-M with sex hormones were identified. Treatment with etoricoxib, a selective cyclooxygenase-2 inhibitor, was proved to be beneficial and safe. We detected its notable efficacy in decreasing urinary PGE levels in the majority of the enrolled patients during 6 months of intervention; clinical phenotypes assessed, including pachydermia, finger clubbing, and joint swelling, were improved. We found no visible evidence of a positive effect of etoricoxib on periostosis; however, significant links between urinary PGE and serum bone turnover markers indicated a potential role of decreased PGE in periostosis management. This is the largest reported cohort of subjects genetically diagnosed with PHO. For the first time, we systematically investigated the biochemical and clinical differences between PHOAR1 and PHOAR2, and prospectively showed the positive efficacy and safety of etoricoxib for PHO patients. © 2017 American Society for Bone and Mineral Research.
Dominant inheritance of osteogenesis imperfecta (OI) is caused by mutations in COL1A1 or COL1A2, the genes that encode type I collagen, and CRTAP, LEPRE1, PPIB, FKBP10, SERPINH1, and SP7 mutations were recently detected in a minority of patients with autosomal recessive OI. However, these findings have been mostly restricted to Western populations. The proportion of mutations and the correlations between genotype and phenotype in Chinese patients with OI are completely unknown. In this study, mutation analyses were performed for COL1A1, COL1A2, CRTAP, and LEPRE1 in a cohort of 58 unrelated Chinese patients with OI; the relationship between collagen type I mutations and clinical features was examined. A total of 56 heterozygous mutations were identified in COL1A1 and COL1A2, including 43 mutations in COL1A1 and 13 mutations in COL1A2. Among the 56 causative COL1A1 and COL1A2 mutations, 24 novel mutations were found, and 25 (44.6%) resulted in the substitution of a glycine within the Gly-X-Y triplet domain of the triple helix. Compared with COL1A1 haploinsufficiency (n = 23), patients with mutations affecting glycine residues had a severe skeletal phenotype. In patients 18 years of age or older, on average patients with COL1A1 haploinsufficiency were taller and had higher femoral neck bone mineral density than with patients with helical mutations. Interestingly, we found two novel compound heterozygous mutations in the LEPRE1 gene in two unrelated families with autosomal recessive OI. Although the genotype-phenotype correlation is still unclear, our findings are useful to understand the genetic basis of Chinese patients with OI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.