To investigate the effect and mechanism of Glucocorticoids (GCs) induced oxidative stress and apoptosis on necrosis of the femoral head in patients and rats.Methods: Eight patients with steroid-induced avascular necrosis of the femoral head (SINFH) and eight patients with developmental dysplasia of the hips (DDH) were enrolled in our study. In animal model, twenty male Sprague-Dawley rats were randomly divided into two groups (SINFH group and NS group). The SINFH model group received the methylprednisolone (MPS) injection, while control group was injected with normal saline (NS). MRI was used to confirm SINFH rat model was established successfully. Then, the rats were sacrificed 4 weeks later and femoral head samples were harvested. Histopathological staining was preformed to evaluate osteonecrosis. TUNEL staining was performed with 8-OHdG and DAPI immunofluorescence staining to evaluate oxidative injury and osteocyte apoptosis. Immunohistochemistry staining was used to detect Nox1, Nox2, and Nox4 protein expression.Results: MRI showed signs of typical osteonecrosis of femoral head in SIHFH patients. Histopathological staining showed that the rate of empty lacunae in SINFH patients was significantly higher (56.88% AE 9.72% vs 19.92% AE 4.18%, T = À11.04, P < 0.001) than that in DDH patients. The immunofluorescence staining indicated that the TUNEL-positive cell and 8-OHdG-positve cell in SINFH patients were significantly higher (49.32% AE 12.95% vs 8.00% AE 2.11%, T = À7.04, P = 0.002, 54.6% AE 23.8% vs 9.75% AE 3.31%, T = À4.17, P = 0.003) compared to the DDH patients. The immunohistochemistry staining showed that the protein expression of NOX1, NOX2 and NOX4 in SINFH patients were significantly increased (64.
Objective This study aimed to identify the hub genes and pathways of genes related to oxidative stress of cartilage in osteonecrosis of femoral head (ONFH), and to predict the transcription factors of the hub genes. Methods The GSE74089 was obtained from the Gene Expression Omnibus (GEO) database, including 4 necrotic tissues and 4 normal tissues, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. GO and signaling pathways analysis were performed using DAVID, Metascape, and GSEA. Protein-protein interaction (PPI) network was constructed using the STRING database, and the Degree algorithm of Cytoscape software was used to screen for hub genes. Finally, the NetworkAnalyst web tool was used to find the hub genes’ transcriptional factors (TFs). Results In total, 440 oxidative stress–related genes were found in GSE74089 and GO database, and 88 of them were significantly differentially expressed. These genes were mainly involved in several signaling pathways, such as MAPK signaling pathway, PI3K-AKT-mTOR signaling pathway, FOXO signaling pathway. The top 10 hub genes were JUN, FOXO3, CASP3, JAK2, RELA, EZH2, ABL1, PTGS2, FBXW7, MCL1. Besides, TFAP2A, GATA2, SP1, and E2F1 may be the key regulatory factors of hub genes. Conclusions We identified some hub genes and signaling pathways associated with oxidative stress in ONFH through a series of bioinformatics analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.