Twin-field quantum key distribution (TF-QKD) protocol and its variants, e.g. phase-matching (PM) QKD and TF-QKD based on sending or not sending, are highly attractive since they are able to overcome the well-known rate-loss limit for QKD protocols without repeater: R = O(η) with η standing for the channel transmittance. However, all these protocols require active phase randomization and post-selection that play an essential role together in their security proof. Counterintuitively, we find that in TF-QKD, beating the rate-loss limit is still possible even if phase randomization and post-selection in the coding mode are both removed, which means our final secure key rate R = O( √ η). Furthermore, our protocol is more feasible in practice and more promising according to its higher final key rate in the valid distance. Our security proof counters collective attack and can also counter coherent attack in asymptotical case.
Abstract:A wide area quantum key distribution (QKD) network deployed on communication infrastructures provided by China Mobile Ltd. is demonstrated. Three cities and two metropolitan area QKD networks were linked up to form the Hefei-Chaohu-Wuhu wide area QKD network with over 150 kilometers coverage area, in which Hefei metropolitan area QKD network was a typical full-mesh core network to offer all-to-all interconnections, and Wuhu metropolitan area QKD network was a representative quantum access network with point-to-multipoint configuration. The whole wide area QKD network ran for more than 5000 hours, from 21 December 2011 to 19 July 2012, and part of the network stopped until last December. To adapt to the complex and volatile field environment, the Faraday-Michelson QKD system with several stability measures was adopted when we designed QKD devices. Through standardized design of QKD devices, resolution of symmetry problem of QKD devices, and seamless switching in dynamic QKD network, we realized the effective integration between point-to-point QKD techniques and networking schemes. 449-449 (1995). 4. R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, and C. Simmons, "Quantum cryptography over underground optical fibers," Lecture Notes in Computer Science, 1109, 329-342 (1996).5. P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.