Entity alignment (EA) is to discover equivalent entities in knowledge graphs (KGs), which bridges heterogeneous sources of information and facilitates the integration of knowledge. Existing EA solutions mainly rely on structural information to align entities, typically through KG embedding. Nonetheless, in real-life KGs, only a few entities are densely connected to others, and the rest majority possess rather sparse neighborhood structure. We refer to the la er as long-tail entities, and observe that such phenomenon arguably limits the use of structural information for EA.To mitigate the issue, we revisit and investigate into the conventional EA pipeline in pursuit of elegant performance. For prealignment, we propose to amplify long-tail entities, which are of relatively weak structural information, with entity name information that is generally available (but overlooked) in the form of concatenated power mean word embeddings. For alignment, under a novel complementary framework of consolidating structural and name signals, we identify entity's degree as important guidance to e ectively fuse two di erent sources of information. To this end, a degree-aware co-a ention network is conceived, which dynamically adjusts the signi cance of features in a degree-aware manner. For post-alignment, we propose to complement original KGs with facts from their counterparts by using con dent EA results as anchors via iterative training. Comprehensive experimental evaluations validate the superiority of our proposed techniques.
Triplets extraction is an essential and pivotal step in automatic knowledge base construction, which captures structural information from unstructured text corpus. Conventional extraction models use a pipeline of named entity recognition and relation classification to extract entities and relations, respectively, which ignore the connection between the two tasks. Recently, several neural network-based models were proposed to tackle the problem, and achieved state-of-the-art performance. However, most of them are unable to extract multiple triplets from a single sentence, which are yet commonly seen in real-life scenarios. To close the gap, we propose in this paper a joint neural extraction model for multitriplets, namely, TME, which is capable of adaptively discovering multiple triplets simultaneously in a sentence via ranking with translation mechanism. In experiment, TME exhibits superior performance and achieves an improvement of 37.6% on F1 score over state-of-the-art competitors.
The ability to incrementally learn new classes is vital to all realworld artificial intelligence systems. A large portion of high-impact applications like social media, recommendation systems, E-commerce platforms, etc. can be represented by graph models. In this paper, we investigate the challenging yet practical problem, Graph Few-shot Class-incremental (Graph FCL) problem, where the graph model is tasked to classify both newly encountered classes and previously learned classes. Towards that purpose, we put forward a Graph Pseudo Incremental Learning paradigm by sampling tasks recurrently from the base classes, so as to produce an arbitrary number of training episodes for our model to practice the incremental learning skill. Furthermore, we design a Hierarchical-Attention-based Graph Meta-learning framework, HAG-Meta from an optimization perspective. We present a task-sensitive regularizer calculated from task-level attention and node class prototypes to mitigate overfitting onto either novel or base classes. To employ the topological knowledge, we add a node-level attention module to adjust the prototype representation. Our model not only achieves greater stability of old knowledge consolidation, but also acquires advantageous adaptability to new knowledge with very limited data samples. Extensive experiments on three real-world datasets, including Amazon-clothing, Reddit, and DBLP, show that our framework demonstrates remarkable advantages in comparison with the baseline and other related state-of-the-art methods.
CCS CONCEPTS• Computing methodologies → Lifelong machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.