Somatic point mutations
at a key arginine residue (R132) within
the active site of the metabolic enzyme isocitrate dehydrogenase 1
(IDH1) confer a novel gain of function in cancer cells, resulting
in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite.
Elevated 2-HG levels are implicated in epigenetic alterations and
impaired cellular differentiation. IDH1 mutations have been described
in an array of hematologic malignancies and solid tumors. Here, we
report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1
mutant enzyme that exhibits profound 2-HG lowering in tumor models
and the ability to effect differentiation of primary patient AML samples
ex vivo. Preliminary data from phase 1 clinical trials enrolling patients
with cancers harboring an IDH1 mutation indicate that AG-120 has an
acceptable safety profile and clinical activity.
Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.
Inhibitors of mutant
isocitrate dehydrogenase (mIDH) 1 and 2 cancer-associated
enzymes prevent the accumulation of the oncometabolite d-2-hydroxyglutarate
(2-HG) and are under clinical investigation for the treatment of several
cancers harboring an IDH mutation. Herein, we describe the discovery
of vorasidenib (AG-881), a potent, oral, brain-penetrant dual inhibitor
of both mIDH1 and mIDH2. X-ray cocrystal structures allowed us to
characterize the compound binding site, leading to an understanding
of the dual mutant inhibition. Furthermore, vorasidenib penetrates
the brain of several preclinical species and inhibits 2-HG production
in glioma tissue by >97% in an orthotopic glioma mouse model. Vorasidenib
represents a novel dual mIDH1/2 inhibitor and is currently in clinical
development for the treatment of low-grade mIDH glioma.
A series of amino acid ester prodrugs of the dual VEGFR-2/FGFR-1 kinase inhibitor 1 (BMS-540215) was prepared in an effort to improve the aqueous solubility and oral bioavailability of the parent compound. These prodrugs were evaluated for their ability to liberate parent drug 1 in in vitro and in vivo systems. The l-alanine prodrug 8 (also known as brivanib alaninate/BMS-582664) was selected as a development candidate and is presently in phase II clinical trials.
Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC50 values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.