BackgroundGastric cancer (GC) has a clear predilection for metastasis toward the omentum which is primarily composed of adipose tissue, indicating that fatty acids may contribute to this phenomenon. However their function remains poorly understood in GC. In this study, we investigated the role of palmitate acid (PA) and its cellular receptor CD36 in the progression of GC.MethodsImmunohistochemical (IHC) staining was performed to detect CD36 expression in GC tissues and its clinical significance was determined statistically. CD36 over-expression and knock-down expression cell models were developed and tested in vitro. Wound-healing assays, migration assays, and invasion assays were performed and peritoneal implants into nude mice were done to assess the biological effects of PA and CD36. The underlying mechanisms were investigated using western blot, immunofluorescence (IF), quantitative real-time PCR (qRT-PCR) and antibody blocking assays.ResultsPA promoted the metastasis of GC by phosphorylation of AKT, which facilitated the nuclear localization of β-catenin through inactivation of GSK-3β via phosphorylation. This tumor-promoting effect of PA was mediated by CD36, a cell surface receptor of fatty acids (FAs). The higher the CD36 expression levels in GC tissues correlated with the poorer the prognosis of patients according to the TCGA database, the GEO database and our own clinical data.ConclusionsOur experiments established CD36 as a key mediator of FA-induced metastasis of GC via the AKT/GSK-3β/β-catenin signaling pathway. CD36 might, therefore, constitute a potential therapeutic target for clinical intervention in GC.Electronic supplementary materialThe online version of this article (10.1186/s13046-019-1049-7) contains supplementary material, which is available to authorized users.
Purinergic mechanisms appear to be involved in motor as well as sensory functions in the urinary bladder. ATP released from efferent nerves excites bladder smooth muscle, whereas ATP released from urothelial cells can activate afferent nerves and urothelial cells. In the present study, we used immunohistochemical techniques to examine the distribution of purinoceptors in the urothelium, smooth muscle, and nerves of the normal cat urinary bladder as well as possible changes in the expression of these receptors in cats with a chronic painful bladder condition termed feline interstitial cystitis (FIC) in which ATP release from the urothelium is increased. In normal cats, a range of P2X (P2X(1), P2X(2), P2X(3), P2X(4), P2X(5), P2X(6), and P2X(7)) and P2Y (P2Y(1), P2Y(2), and P2Y(4)) receptor subtypes was expressed throughout the bladder urothelium. In FIC cats, there is a marked reduction in P2X(1) and loss of P2Y(2) receptor staining. Both P2X(3) and P2Y(4) are present in nerves in normal cat bladder, and no obvious differences in staining were detected in FIC. Smooth muscle in the normal bladder did not exhibit P2Y receptor staining but did exhibit P2X (P2X(2), P2X(1)) staining. In the FIC bladder smooth muscle, there was a significant reduction in P2X(1) expression. These findings raise the possibility that purinergic mechanisms in the urothelium and bladder smooth muscle are altered in FIC cats. Because the urothelial cells appear to have a sensory function in the bladder, it is possible that the plasticity in urothelial purinergic receptors is linked with the painful bladder symptoms in IC.
The molecular mechanism underlying gastric cancer (GC) invasion and metastasis is still poorly understood. In this study, we tried to investigate the roles of CXCR4 and CXCR2 signalings in gastric cancer metastasis. A highly invasive gastric cancer cell model was established. Chemokines receptors were profiled to search for the accountable ones. Then the underlying molecular mechanism was investigated using both in vitro and in vivo techniques, and the clinical relevance of CXCR4 and CXCR2 expression was studied in gastric cancer samples. CXCR4 and CXCR2 were highly expressed in a high invasive gastric cancer cell model and in gastric cancer tissues. Overexpression of CXCR4 and CXCR2 was associated with more advanced tumor stage and poorer survival for GC patients. CXCR4 and CXCR2 expression strongly correlated with each other in the way that CXCR2 expression changed accordingly with the activity of CXCR4 signaling and CXCR4 expression also changed in agreement with CXCR2 activity. Further studies demonstrated CXCR4 and CXCR2 can both activated NF-κB and STAT3 signaling, while NF-κBp65 can then transcriptionally activate CXCR4 and STAT3 can activate CXCR2 expression. This crosstalk between CXCR4 and CXCR2 contributed to EMT, migration and invasion of gastric cancer. Finally, Co-inhibition of CXCR4 and CXCR2 is more effective in reducing gastric cancer metastasis. Our results demonstrated that CXCR4 and CXCR2 cross-activate each other to promote the metastasis of gastric cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.