When reliable a priori information is not available, it is difficult to correctly predict near-surface S-wave velocity models from Rayleigh waves through existing techniques, especially in the case of complex geology. To tackle this issue, we have developed a new method: two-grid genetic-algorithm Rayleigh-wave full-waveform inversion (FWI). Adopting a two-grid parameterization of the model, the genetic algorithm inverts for unknown velocities and densities at the nodes of a coarse grid, whereas the forward modeling is performed on a fine grid to avoid numerical dispersion. A bilinear interpolation brings the coarse-grid results into the fine-grid models. The coarse inversion grid allows for a significant reduction in the computing time required by the genetic algorithm to converge. With a coarser grid, there are fewer unknowns and less required computing time, at the expense of the model resolution. To further increase efficiency, our inversion code can perform the optimization using an offset-marching strategy and/or a frequency-marching strategy that can make use of different kinds of objective functions and allows for parallel computing. We illustrate the effect of our inversion method using three synthetic examples with rather complex near-surface models. Although no a priori information was used in all three tests, the long-wavelength structures of the reference models were fairly predicted, and satisfactory matches between “observed” and predicted data were achieved. The fair predictions of the reference models suggest that the final models estimated by our genetic-algorithm FWI, which we call macromodels, would be suitable inputs to gradient-based Rayleigh-wave FWI for further refinement. We also explored other issues related to the practical use of the method in different work and explored applications of the method to field data.
We have applied our two-grid genetic-algorithm Rayleigh-wave full-waveform inversion (FWI) to two actual data sets acquired in Luni (Italy) and Grenoble (France), respectively. Because our technique used 2D elastic finite-difference modeling for solving the forward problem, the observed data were 3D to 2D corrected prior to the inversion. To limit the computing time, both inversions focused on predicting low-resolution, smooth models by using quite coarse inversion grids. The wavelets for FWI were estimated directly from the observed data by using the Wiener method. In the Luni case, due to the strong dispersion effects on the data, to strengthen the inversion, envelopes and waveforms were considered in the objective function and an offset-marching strategy was applied. Though no a priori information was exploited, the outcomes of the Luni and Grenoble data inversion were fair. The predicted Luni [Formula: see text] model indicates a strong velocity increase from approximately 3 to 6 m, and velocity inversions have been detected at approximately 2 and 9 m depths. Analyzing the dispersion spectra, it results that the predicted Luni data reasonably reproduced the waveforms related to the fundamental mode and, likely, a small part of those related to the first higher mode. Concerning the Grenoble example, the predicted [Formula: see text] model coincides reasonably well with the long-wavelength structures presented in the [Formula: see text] profiles obtained from nearby boreholes. The data reconstruction is generally satisfactory, and when mismatches occur between the predicted and observed traces, the phase differences are always within half-periods. The fair inversion outcomes suggest that the predicted Luni and Grenoble models would likely be adequate initial models for local FWI, which could further increase the resolution and the details of the estimated [Formula: see text] models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.