Epigenetic factors may modulate chronic Hepatitis B viral infection by affecting virion gene transcription. The aim of this study was to compare the methylation status of the intrahepatic covalently closed circular DNA (cccDNA) CpG island 2 and HBV replication capability. HBV cccDNA was extracted from liver biopsies of 55 HBsAg-positive patients with chronic hepatitis B (32 HBeAg-positive and 23 HBeAg-negative), and was analyzed for methylation status and quantity. The two Hpa II recognition sequences CCpGG in the CpG island 2 were methylated in infected liver tissues from 24 (43.6%) of 55 patients. Positive ratios of cccDNA methylation were significantly higher in HBeAg-negative patients (15/23, 65.2%) than HBeAg-positive patients (9/32, 28.1%) (P < 0.05). The percentage of methylated-cccDNA/total-cccDNA of HBeAg-negative samples (a median of 48%, ranging from 5% to 83%) was significantly higher (P < 0.001) than HBeAg-positive samples (a median of 14%, ranging from 0.26% to 35%). Ratios of relaxed circular DNA (rcDNA) to cccDNA molecules revealed that cccDNA methylation correlated with impaired virion productivity in HBeAg-positive individuals (P < 0.05). The bisulfite DNA sequencing showed that methylation density was significantly higher in HBeAg-negative than in HBeAg-positive patients (P < 0.05). The methylation level of the CpG island 2 of the cccDNA in HBeAg-negative patients was higher than that in HBeAg-positive patients, suggesting that HBV cccDNA methylation may be relevant to replication capability of HBV.
BackgroundThis article describes a pilot study evaluating a novel liquid biopsy system for non‐small cell lung cancer (NSCLC) patients. The electric field‐induced release and measurement (EFIRM) method utilizes an electrochemical biosensor for detecting oncogenic mutations in biofluids.MethodsSaliva and plasma of 17 patients were collected from three cancer centers prior to and after surgical resection. The EFIRM method was then applied to the collected samples to assay for exon 19 deletion and p.L858 mutations. EFIRM results were compared with cobas results of exon 19 deletion and p.L858 mutation detection in cancer tissues.ResultsThe EFIRM method was found to detect exon 19 deletion with an area under the curve (AUC) of 1.0 in both saliva and plasma samples in lung cancer patients. For L858R mutation detection, the AUC of saliva was 1.0, while the AUC of plasma was 0.98. Strong correlations were also found between presurgery and post‐surgery samples for both saliva (0.86 for exon 19 and 0.98 for L858R) and plasma (0.73 for exon 19 and 0.94 for L858R).ConclusionOur study demonstrates the feasibility of utilizing EFIRM to rapidly, non‐invasively, and conveniently detect epidermal growth factor receptor mutations in the saliva of patients with NSCLC, with results corresponding perfectly with the results of cobas tissue genotyping.
SUMMARY MyD88, the intracellular adaptor of most TLRs, mediates either pro-inflammatory or immunosuppressive signaling that contributes to chronic inflammation-associated diseases. Although gene-specific chromatin modifications regulate inflammation, the role of MyD88 signaling in establishing such epigenetic landscapes under different inflammatory states remains elusive. Using quantitative proteomics to enumerate the inflammation-phenotypic constituents of MyD88 interactome, we found that in endotoxin-tolerant macrophages PP2Ac enhances its association with MyD88, and is constitutively activated. Knockdown of PP2Ac prevents suppression of pro-inflammatory genes and resistance to apoptosis. Through sitespecific dephosphorylation constitutively active PP2Ac disrupts the signal-promoting TLR4-MyD88 complex, and broadly suppresses the activities of multiple pro-inflammatory/proapoptotic pathways as well, shifting pro-inflammatory MyD88 signaling to a pro-survival mode. Constitutively active PP2Ac translocated with MyD88 into the nuclei of tolerant macrophages establishes the immunosuppressive pattern of chromatin modifications and represses chromatin remodeling to selectively silence pro-inflammatory genes, coordinating the MyD88-dependent inflammation control at both signaling and epigenetic levels under endotoxin-tolerant conditions.
Inhaled PM2.5 (particulate matter with an aerodynamic diameter of 2.5 μm or less) can induce lung inflammation through released inflammatory mediators from airway cells, such as interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α). However, the mechanisms underlying PM2.5-induced IL-8 gene expression have not been fully characterized. BEAS-2B cells (a human bronchial epithelial cell line) and THP-1 cells (a human macrophage-like cell line) were used as the in vitro models to investigate the underlying mechanism in this study. IL-8 expression was increased in the cells treated with PM2.5 in a dose-dependent manner. The water-soluble and insoluble fractions of PM2.5 suspension were both shown to induce IL-8 expression. PM2.5 exposure could obviously induce ROS (reactive oxygen species) generation, indicative of oxidative stress. Pretreatment with the antioxidant N-acetyl-l-cysteine (NAC) potently inhibited PM2.5-induced IL-8 expression. Employment of the transition metal chelators including TPEN (N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine) or DFO (desferrioxamine) inhibited IL-8 expression induced by PM2.5 by over 20% in BEAS-2B cells, but had minimal effect in THP-1 cells. Pretreatment with the endocytosis inhibitor CytD markedly blocked IL-8 expression induced by PM2.5 in both BEAS-2B and THP-1 cells. In summary, exposure to PM2.5 induced IL-8 gene expression through oxidative stress induction and endocytosis in airway cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1869-1878, 2016.
Expression and localization of MUC1 proteins in primary liver carcinomas (PLCs) may act as prognostic markers, and MUC1 molecules might be helpful in differential diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.