Chemodynamic therapy (CDT) utilizes iron-initiated Fenton chemistry to destroy tumor cells by converting endogenous H O into the highly toxic hydroxyl radical ( OH). There is a paucity of Fenton-like metal-based CDT agents. Intracellular glutathione (GSH) with OH scavenging ability greatly reduces CDT efficacy. A self-reinforcing CDT nanoagent based on MnO is reported that has both Fenton-like Mn delivery and GSH depletion properties. In the presence of HCO , which is abundant in the physiological medium, Mn exerts Fenton-like activity to generate OH from H O . Upon uptake of MnO -coated mesoporous silica nanoparticles (MS@MnO NPs) by cancer cells, the MnO shell undergoes a redox reaction with GSH to form glutathione disulfide and Mn , resulting in GSH depletion-enhanced CDT. This, together with the GSH-activated MRI contrast effect and dissociation of MnO , allows MS@MnO NPs to achieve MRI-monitored chemo-chemodynamic combination therapy.
Cancer is one of the leading causes of morbidity and mortality in the world, but more cancer therapies are needed to complement existing regimens due to problems of existing cancer therapies. Herein, we term ferroptosis therapy (FT) as a form of cancer therapy and hypothesize that the FT efficacy can be significantly improved via accelerating the Fenton reaction by simultaneously increasing the local concentrations of all reactants (Fe 2+ , Fe 3+ , and H 2 O 2 ) in cancer cells. Thus, Fenton-reaction-acceleratable magnetic nanoparticles, i.e., cisplatin (CDDP)-loaded Fe 3 O 4 /Gd 2 O 3 hybrid nanoparticles with conjugation of lactoferrin (LF) and RGD dimer (RGD2) (FeGd-HN@Pt@LF/RGD2), were exploited in this study for FT of orthotopic brain tumors. FeGd-HN@Pt@LF/RGD2 nanoparticles were able to cross the blood−brain barrier because of its small size (6.6 nm) and LF-receptor-mediated transcytosis. FeGd-HN@Pt@LF/RGD2 can be internalized into cancer cells by integrin α v β 3 -mediated endocytosis and then release Fe 2+ , Fe 3+ , and CDDP upon endosomal uptake and degradation. Fe 2+ and Fe 3+ can directly participate in the Fenton reaction, whereas the CDDP can indirectly produce H 2 O 2 to further accelerate the Fenton reaction. The acceleration of Fenton reaction generates reactive oxygen species to induce cancer cell death. FeGd-HN@Pt@LF/RGD2 successfully delivered reactants involved in the Fenton reaction to the tumor site and led to significant inhibition of tumor growth. Finally, the intrinsic magnetic resonance imaging (MRI) capability of the nanoparticles was used to assess and monitor tumor response to FT (self-MRI monitoring).
Glucose is a key energy supplier and nutrient for tumor growth. Herein, inspired by the glucose oxidase (GOx)-assisted conversion of glucose into gluconic acid and toxic H O , a novel treatment paradigm of starving-like therapy is developed for significant tumor-killing effects, more effective than conventional starving therapy by only cutting off the energy supply. Furthermore, the generated acidic H O can oxidize l-Arginine (l-Arg) into NO for enhanced gas therapy. By using hollow mesoporous organosilica nanoparticle (HMON) as a biocompatible/biodegradable nanocarrier for the co-delivery of GOx and l-Arg, a novel glucose-responsive nanomedicine (l-Arg-HMON-GOx) has been for the first time constructed for synergistic cancer starving-like/gas therapy without the need of external excitation, which yields a remarkable H O -NO cooperative anticancer effect with minimal adverse effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.