Background: More than one million people acquire sexually transmitted infections (STIs) every day globally. It is possible that predicting an individual’s future risk of HIV/STIs could contribute to behaviour change or improve testing. We developed a series of machine learning models and a subsequent risk-prediction tool for predicting the risk of HIV/STIs over the next 12 months. Methods: Our data included individuals who were re-tested at the clinic for HIV (65,043 consultations), syphilis (56,889 consultations), gonorrhoea (60,598 consultations), and chlamydia (63,529 consultations) after initial consultations at the largest public sexual health centre in Melbourne from 2 March 2015 to 31 December 2019. We used the receiver operating characteristic (AUC) curve to evaluate the model’s performance. The HIV/STI risk-prediction tool was delivered via a web application. Results: Our risk-prediction tool had an acceptable performance on the testing datasets for predicting HIV (AUC = 0.72), syphilis (AUC = 0.75), gonorrhoea (AUC = 0.73), and chlamydia (AUC = 0.67) acquisition. Conclusions: Using machine learning techniques, our risk-prediction tool has acceptable reliability in predicting HIV/STI acquisition over the next 12 months. This tool may be used on clinic websites or digital health platforms to form part of an intervention tool to increase testing or reduce future HIV/STI risk.
Background HIV and sexually transmitted infections (STIs) are major global public health concerns. Over 1 million curable STIs occur every day among people aged 15 years to 49 years worldwide. Insufficient testing or screening substantially impedes the elimination of HIV and STI transmission. Objective The aim of our study was to develop an HIV and STI risk prediction tool using machine learning algorithms. Methods We used clinic consultations that tested for HIV and STIs at the Melbourne Sexual Health Centre between March 2, 2015, and December 31, 2018, as the development data set (training and testing data set). We also used 2 external validation data sets, including data from 2019 as external “validation data 1” and data from January 2020 and January 2021 as external “validation data 2.” We developed 34 machine learning models to assess the risk of acquiring HIV, syphilis, gonorrhea, and chlamydia. We created an online tool to generate an individual’s risk of HIV or an STI. Results The important predictors for HIV and STI risk were gender, age, men who reported having sex with men, number of casual sexual partners, and condom use. Our machine learning–based risk prediction tool, named MySTIRisk, performed at an acceptable or excellent level on testing data sets (area under the curve [AUC] for HIV=0.78; AUC for syphilis=0.84; AUC for gonorrhea=0.78; AUC for chlamydia=0.70) and had stable performance on both external validation data from 2019 (AUC for HIV=0.79; AUC for syphilis=0.85; AUC for gonorrhea=0.81; AUC for chlamydia=0.69) and data from 2020-2021 (AUC for HIV=0.71; AUC for syphilis=0.84; AUC for gonorrhea=0.79; AUC for chlamydia=0.69). Conclusions Our web-based risk prediction tool could accurately predict the risk of HIV and STIs for clinic attendees using simple self-reported questions. MySTIRisk could serve as an HIV and STI screening tool on clinic websites or digital health platforms to encourage individuals at risk of HIV or an STI to be tested or start HIV pre-exposure prophylaxis. The public can use this tool to assess their risk and then decide if they would attend a clinic for testing. Clinicians or public health workers can use this tool to identify high-risk individuals for further interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.