A meta-analysis of 23 published studies identified the BsmI polymorphism of the VDR gene to be associated with an increased risk of colon cancer.
Necroptosis, a novel type of programmed cell death, is involved in stroke-induced ischemic brain injury. Although studies have sought to explore the mechanisms of necroptosis, its signaling pathway has not yet to be completely elucidated. Thus, we used oxygen-glucose deprivation (OGD) and middle cerebral artery occlusion (MCAO) models mimicking ischemic stroke (IS) conditions to investigate mechanisms of necroptosis. We found that OGD and MCAO induced cell death, local brain ischemia and neurological deficit, while zVAD-fmk (zVAD, an apoptotic inhibitor), GSK’872 (a receptor interacting protein kinase-3 (RIP3) inhibitor), and combined treatment alleviated cell death and ischemic brain injury. Moreover, OGD and MCAO upregulated protein expression of the triggers of necroptosis: receptor interacting protein kinase-1 (RIP1), RIP3 and mixed lineage kinase domain-like protein (MLKL). The upregulation of these proteins was inhibited by GSK’872, combination treatments and RIP3 siRNA but not zVAD treatment. Intriguingly, hypoxia-inducible factor-1 alpha (HIF-1α), an important transcriptional factor under hypoxic conditions, was upregulated by OGD and MCAO. Similar to their inhibitory effects on aforementioned proteins upregulation, GSK’872, combination treatments and RIP3 siRNA decreased HIF-1α protein level. These findings indicate that necroptosis contributes to ischemic brain injury induced by OGD and MCAO and implicate HIF-1α, RIP1, RIP3, and MLKL in necroptosis.
Ischemia-reperfusion injury is a common feature of ischemic stroke, which occurs when blood supply is restored after a period of ischemia. Reperfusion can be achieved either by thrombolysis using thrombolytic reagents such as tissue plasminogen activator (tPA), or through mechanical removal of thrombi. Spontaneous reperfusion also occurs after ischemic stroke. However, despite the beneficial effect of restored oxygen supply by reperfusion, it also causes deleterious effect compared with permanent ischemia. With the recent advancement in endovascular therapy including thrombectomy and thrombus disruption, reperfusion-injury has become an increasingly critical challenge in stroke treatment. It is therefore of extreme importance to understand the mechanisms of ischemia-reperfusion injury in the brain in order to develop effective therapeutics. Accumulating experimental evidence have suggested that the mechanisms of ischemia-reperfusion injury include oxidative stress, leukocyte infiltration, platelet adhesion and aggregation, complement activation, mitochondrial mediated mechanisms, and blood-brain-barrier (BBB) disruption, which altogether ultimately lead to edema or hemorrhagic transformation (HT) in the brain. Potential therapeutic strategies against ischemia-reperfusion injury may be developed targeting these mechanisms. In this review, we briefly discuss the pathophysiology and cellular and molecular mechanisms of cerebral ischemia-reperfusion injury, and potential therapeutic strategies.
Stem cells transplantation holds great promise for the treatment of ischemic diseases through functional revascularization. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are also an ideal candidate for cell-based bioengineering. Herein, we report on the development of a simple and effective protocol to isolate UC-MSCs, and confirm their endothelial potential both in vitro and in vivo. UC-MSCs were isolated by a novel explantation technique and induced to differentiate into endothelial-like cells. Then UC-MSCs were transplanted into ischemic mouse model and cultured on 3D gel/MMT-CS composite scaffolds. Morphological and proliferation assessments show that sufficient UC-MSCs can be generated during a relatively short culture period with explantation technique. Increased expression of endothelial-specific markers (KDR and vWF), and functional markers (ac-LDL uptake and UEA-1 binding), indicate that functional endothelial progenitor cells are induced after 9 days of in vitro culture. In an ischemic hindlimb mouse model, the ratio of ischemic/nonischemic limb perfusion 4 weeks after MSCs transplantation reached 0.84 +/- 0.09. The capillary density of this group was 2.57-fold greater than that of sham-injected mice (P < 0.05). Immunofluorescence and immunohistological analyses indicate that MSCs may act to salvage the ischemic tissue by incorporating into the local vasculature. In vitro, UC-MSCs were observed to incorporate into 3D gel/MMT-CS composite scaffolds, to secrete extracellular matrix, to remain viable, and to retain their proliferation capacity. In conclusion, UC-MSCs isolated by novel yet simple explantation technique are well suited for application in the development of novel stem cell-based revascularization therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.