Microtia is a congenital external ear malformation that can seriously influence the psychological and physiological well-being of affected children. The successful regeneration of human ear-shaped cartilage using a tissue engineering approach in a nude mouse represents a promising approach for auricular reconstruction. However, owing to technical issues in cell source, shape control, mechanical strength, biosafety, and long-term stability of the regenerated cartilage, human tissue engineered ear-shaped cartilage is yet to be applied clinically. Using expanded microtia chondrocytes, compound biodegradable scaffold, and in vitro culture technique, we engineered patient-specific ear-shaped cartilage in vitro. Moreover, the cartilage was used for auricle reconstruction of five microtia patients and achieved satisfactory aesthetical outcome with mature cartilage formation during 2.5 years follow-up in the first conducted case. Different surgical procedures were also employed to find the optimal approach for handling tissue engineered grafts. In conclusion, the results represent a significant breakthrough in clinical translation of tissue engineered human ear-shaped cartilage given the established in vitro engineering technique and suitable surgical procedure.This study was registered in Chinese Clinical Trial Registry (ChiCTR-ICN-14005469).
Glass has outstanding optical properties, hardness, and durability, but its applications are limited by its inherent brittleness and poor impact resistance. Lamination and tempering can improve impact response but do not suppress brittleness. We propose a bioinspired laminated glass that duplicates the three-dimensional “brick-and-mortar” arrangement of nacre from mollusk shells, with periodic three-dimensional architectures and interlayers made of a transparent thermoplastic elastomer. This material reproduces the “tablet sliding mechanism,” which is key to the toughness of natural nacre but has been largely absent in synthetic nacres. Tablet sliding generates nonlinear deformations over large volumes and significantly improves toughness. This nacre-like glass is also two to three times more impact resistant than laminated glass and tempered glass while maintaining high strength and stiffness.
Au-BiVO(4) heterogeneous nanostructures have been successfully prepared through in situ growth of gold nanoparticles on BiVO(4) microtubes and nanosheets via a cysteine-linking strategy. The experimental results reveal that these Au-BiVO(4) heterogeneous nanostructures exhibit much higher visible-light photocatalytic activities than the individual BiVO(4) microtubes and nanosheets for both dye degradation and water oxidation. The enhanced photocatalytic efficiencies are attributed to the charge transfer from BiVO(4) to the attached gold nanoparticles as well as their surface plasmon resonance (SPR) absorption. These new heteronanostructures are expected to show considerable potential applications in solar-driven wastewater treatment and water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.