With the proliferation of pump-and-dump schemes (P&Ds) in the cryptocurrency market, it becomes imperative to detect such fraudulent activities in advance to alert potentially susceptible investors. In this paper, we focus on predicting the pump probability of all coins listed in the target exchange before a scheduled pump time, which we refer to as the target coin prediction task. Firstly, we conduct a comprehensive study of the latest 709 P&D events organized in Telegram from Jan. 2019 to Jan. 2022. Our empirical analysis reveals some interesting patterns of P&Ds, such as that pumped coins exhibit intra-channel homogeneity and inter-channel heterogeneity. Here channel refers a form of group in Telegram that is frequently used to coordinate P&D events. This observation inspires us to develop a novel sequence-based neural network, dubbed SNN, which encodes a channel's P&D event history into a sequence representation via the positional attention mechanism to enhance the prediction accuracy. Positional attention helps to extract useful information and alleviates noise, especially when the sequence length is long. Extensive experiments verify the effectiveness and generalizability of proposed methods. Additionally, we release the code and P&D dataset on GitHub https://github.com/Bayi-Hu/Pump-and-Dump-Detection-on-Cryptocurrency, and regularly update the dataset.
As various forms of fraud proliferate on Ethereum, it is imperative to safeguard against these malicious activities to protect susceptible users from being victimized. While current studies solely rely on graph-based fraud detection approaches, it is argued that they may not be well-suited for dealing with highly repetitive, skew-distributed and heterogeneous Ethereum transactions. To address these challenges, we propose BERT4ETH, a universal pretrained Transformer encoder that serves as an account representation extractor for detecting various fraud behaviors on Ethereum. BERT4ETH features the superior modeling capability of Transformer to capture the dynamic sequential patterns inherent in Ethereum transactions, and addresses the challenges of pre-training a BERT model for Ethereum with three practical and effective strategies, namely repetitiveness reduction, skew alleviation and heterogeneity modeling. Our empirical evaluation demonstrates that BERT4ETH outperforms state-of-the-art methods with significant enhancements in terms of the phishing account detection and de-anonymization tasks. The code for BERT4ETH is available at: https://github.com/git-disl/BERT4ETH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.