Existing edge detection algorithms suffer from inefficient edge localization, noise sensitivity, and/or relatively poor automatic detection capability. Contemporary edge detection algorithms can be improved by targeting these problems to help bolster their performance. Grey system theory can be used to resolve the small data and poor information issues in the local information of uncertain systems. An automatic edge detection algorithm was developed in this study based on a grey prediction model to remedy these problems. Noise characteristics in grey images are used to deploy a noise-filtering algorithm based on local features. A mask with twenty-four edge direction information points (345°) was established based on edge line texture features. By compressing the amplitude of the sequence, the randomly oscillated grey prediction sequence can be converted into a smooth, new sequence. The discrete grey model (1,1) (DGM(1,1)) was established based on this new grey prediction sequence to obtain the grey prediction maximum value. A grey prediction image with enhanced edges was obtained by replacing the pixel value in the original image with the maximum grey prediction value. A grey prediction subtraction image with edges separated from non-edge points was also obtained by subtracting the original image from the grey prediction image. The optimal separation threshold in the grey prediction subtraction image can be determined via the global adaptive threshold selection method. The neighborhood search method was then deployed to remove stray points and burrs from the image after the target was separated from the background, creating the final edge image. Experiments were performed on a computer-simulated phantom to find that both the subjective visual effects and objective evaluation criteria are better under the proposed method than several other competitive methods. The proposed edge detection algorithm shows excellent edge detection ability and is highly robust to noise, though the grey prediction model needs further improvement to optimize the run time.
This paper proposes a single-stage adaptive multi-scale noise filtering algorithm for point clouds, based on feature information, which aims to mitigate the fact that the current laser point cloud noise filtering algorithm has difficulty quickly completing the single-stage adaptive filtering of multi-scale noise. The feature information from each point of the point cloud is obtained based on the efficient k-dimensional (k-d) tree data structure and amended normal vector estimation methods, and the adaptive threshold is used to divide the point cloud into large-scale noise, a feature-rich region, and a flat region to reduce the computational time. The large-scale noise is removed directly, the feature-rich and flat regions are filtered via improved bilateral filtering algorithm and weighted average filtering algorithm based on grey relational analysis, respectively. Simulation results show that the proposed algorithm performs better than the state-of-art comparison algorithms. It was, thus, verified that the algorithm proposed in this paper can quickly and adaptively (i) filter out large-scale noise, (ii) smooth small-scale noise, and (iii) effectively maintain the geometric features of the point cloud. The developed algorithm provides research thought for filtering pre-processing methods applicable in 3D measurements, remote sensing, and target recognition based on point clouds.
The traditional edge detection method is altogether inaccurate, nonadaptive, and particularly ineffective on noisy images. This paper proposes a novel edge detection algorithm based on gray entropy theory and local texture features. In the 3×3 neighborhood window, 28 comparison sequences are constructed according to local texture features. The reference sequence is composed of the median of all elements in the 3×3 neighborhood window. A total of 28 gray relation degrees as obtained by gray relation analysis between the 28 comparison sequences and reference sequences, as well as 28 gray relation degrees, are analyzed by gray entropy theory to initially filter the image. Gray entropy analysis is then performed on the comparison sequences composed of 28 texture features and reference sequences composed of the central pixel points of the filtered image to determine the maximum gray entropy difference. A comparative threshold adaptive acquisition method is designed to separate gray entropy difference sequence elements and identify all edge points accordingly. The simulation results show that the proposed algorithm effectively achieves adaptive edge detection and has strong anti-noise capability. The results of this study may provide a workable reference for edge information detection in the field of artificial intelligence (e.g., image recognition, pattern recognition applications).INDEX TERMS Image processing, image edge detection, gray relation analysis, gray entropy theory, textural feature analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.