Automatically predicting age group and gender from face images acquired in unconstrained conditions is an important and challenging task in many real-world applications. Nevertheless, the conventional methods with manually-designed features on in-the-wild benchmarks are unsatisfactory because of incompetency to tackle large variations in unconstrained images. This difficulty is alleviated to some degree through Convolutional Neural Networks (CNN) for its powerful feature representation. In this paper, we propose a new CNN based method for age group and gender estimation leveraging Residual Networks of Residual Networks (RoR), which exhibits better optimization ability for age group and gender classification than other CNN architectures. Moreover, two modest mechanisms based on observation of the characteristics of age group are presented to further improve the performance of age estimation. In order to further improve the performance and alleviate overfitting problem, RoR model is pre-trained on ImageNet firstly, and then it is fune-tuned on the IMDB-WIKI-101 data set for further learning the features of face images, finally, it is used to fine-tune on Adience data set. Our experiments illustrate the effectiveness of RoR method for age and gender estimation in the wild, where it achieves better performance than other CNN methods. Finally, the RoR-152+IMDB-WIKI-101 with two mechanisms achieves new state-of-the-art results on Adience benchmark.
Age estimation from a single face image has been an essential task in the field of human-computer interaction and computer vision which has a wide range of practical application value. Concerning the problem that accuracy of age estimation of face images in the wild are relatively low for existing methods, where they take into account only the whole features of face image while neglecting the fine-grained features of age-sensitive area, we propose a method based on Attention LSTM network for Fine-Grained age estimation in the wild based on the idea of Fine-Grained categories and visual attention mechanism. This method combines ResNets or RoR models with LSTM unit to construct AL-ResNets or AL-RoR networks to extract agesensitive local regions, which effectively improves age estimation accuracy. Firstly, ResNets or RoR model pre-trained on ImageNet dataset is selected as the basic model, which is then fine-tuned on the IMDB-WIKI-101 dataset for age estimation. Then, we finetune ResNets or RoR on the target age datasets to extract the global features of face images. To extract the local characteristics of age-sensitive areas, the LSTM unit is then presented to obtain the coordinates of the age-sensitive region automatically. Finally, the age group classification experiment is conducted directly on the Adience dataset, and age-regression experiments are performed by the Deep EXpectation algorithm (DEX) on MORPH Album 2, FG-NET and LAP datasets. By combining the global and local features, we got our final prediction results. Our experiments illustrate the effectiveness of AL-ResNets or AL-RoR for age estimation in the wild, where it achieves new state-of-the-art performance than all other CNN methods on the Adience, MORPH Album 2, FG-NET and LAP datasets.
The detection of insulators in power transmission and transformation inspection images is the basis for insulator state detection and fault diagnosis in thereafter. Aiming at the detection of insulators with different aspect ratios and scales and ones with mutual occlusion, a method of insulator inspection image based on the improved faster region-convolutional neural network (R-CNN) is put forward in this paper. By constructing a power transmission and transformation insulation equipment detection dataset and fine-tuning the faster R-CNN model, the anchor generation method and non-maximum suppression (NMS) in the region proposal network (RPN) of the faster R-CNN model were improved, thus realizing a better detection of insulators. The experimental results show that the average precision (AP) value of the faster R-CNN model was increased to 0.818 with the improved anchor generation method under the VGG-16 Net. In addition, the detection effect of different aspect ratios and different scales of insulators in the inspection images was improved significantly, and the occlusion of insulators could be effectively distinguished and detected using the improved NMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.