A three-coordinate cobalt(I) complex exhibits high catalytic efficiency and selectivity as well as good functional group compatibility in alkyne hydrosilylation. [Co(IAd)(PPh3)(CH2TMS)] (1) (IAd = 1,3-diadamantylimidazol-2-ylidene) facilitates regio- and stereoselective hydrosilylation of terminal, symmetrical internal, and trimethylsilyl-substituted unsymmetrical internal alkynes to produce single hydrosilylation products in the forms of β-(E)-silylalkenes, (E)-silylalkenes, and (Z)-α,α-disilylalkenes, respectively, in high yields. The comparable catalytic efficiency and selectivity of the Co(I) silyl complex [Co(IAd)(PPh3)(SiHPh2)] that was prepared from the reaction of 1 with H2SiPh2, and the isolation of an alkyne Co(I) complex [Co(IAd)(η(2)-PhC≡CPh)(CH2TMS)] from the reaction of 1 with the acetylene, point out a modified Chalk-Harrod catalytic cycle for these hydrosilylation reactions. The high selectivity is thought to be governed by steric factors.
Intramolecular C(sp 3 )−H bond activation reactions mediated by low-valent cobalt, both Co(I) and Co(0), have been observed in the reactions of the three-coordinate cobalt complex [Co(IMes) 2 Cl] (IMes = 1,3-dimesitylimidazol-2-ylidene) with alkylation reagents and sodium amalgam. The reactions with alkylation reagents gave [Co(IMes)(IMes′)(N 2 )], featuring a metalated IMes′ anion, whereas the oneelectron-reduction reaction afforded [Co(IMes′) 2 ]. The Co(II) complex can react with CO, isocyanide, and a diazo compound to furnish interesting cobalt complexes bearing functionalized N-heterocyclic carbene ligands. The establishment of these conversions demonstrates the capability of low-valent cobalt with coordination unsaturation to mediate C(sp 3 )−H bond activation and functionalization.
A series of single component FLPs has been investigated for small molecule capture, with the finding that through tuning of both the thermodynamics of binding/activation and the degree of preorganization (i.e., ΔS(⧧)) reversibility can be brought about at (or close to) room temperature. Thus, the dimethylxanthene system {(C6H4)2(O)CMe2}(PMes2)(B(C6F5)2): (i) heterolytically cleaves dihydrogen to give an equilibrium mixture of FLP and H2 activation product in solution at room temperature and (ii) reversibly captures nitrous oxide (uptake at room temperature, 1 atm; release at 323 K).
The catalytic dehydrogenation of ammonia- and amine-boranes by a dimethylxanthene-derived frustrated Lewis pair is described. Turnover is facilitated on a thermodynamic basis by the ready release of H2 from the weakly basic PPh2-containing system. In situ NMR studies and the isolation of intermediates from stoichiometric reactions support a mechanism initiated by B-H activation, followed by end-growth BN coupling involving the terminal NH bond of the bound BN fragment and a BH bond of the incoming borane monomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.