We consider a reaction-diffusion system modeling chemotaxis, which describes the situation of two species of bacteria competing for the same nutrient. We use Moser-Alikakos iteration to prove the global existence of the solution. We also study the existence of nontrivial steady state solutions and their stability.
In this paper we consider a nonlocal differential equation, which is a limiting equation of one dimensional Gierer-Meinhardt model. We study the existence of spike steady states and their stability. We also construct a single-spike quasi-equilibrium solution and investigate the dynamics of spikelike solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.