The hard-magnetic soft materials which can sustain high residual magnetic flux density gradually attract the attention of researchers because of potential applications in soft robotics and biomedical fields. In this work, we focus on the dynamic response of hardmagnetic soft materials. The dynamic motion equations are derived by the Euler-Lagrange equation. The effects of the aspect radio on the nonlinear vibration of the hard-magnetic soft cuboid under the force and applied magnetic fields in different directions are investigated. The amplitude-frequency curves demonstrate that the aspect ratio also has an influence on the frequency and amplitude of the primary resonance. Moreover, to eliminate undesired vibration responses, the PID controller is applied to the vibration of the hardmagnetic soft materials, and the desired results can be obtained.
As a type of intelligent electroactive polymer, dielectric elastomer (DE) exhibits viscoelastic properties. It’s worth pointing out that the relaxation time has great significance for studying the mechanical behavior of viscoelastic polymer. In this paper, a generalized Maxwell model is used to describe the viscoelastic property of dielectric elastomer balloon. Meanwhile, a theoretical model with multiple relaxation times is used and the natural frequency of small amplitude oscillation is derived. Subsequently, the model is validated by comparing with experimental results. The model with double relaxation times can describe the deformation of the dielectric elastomer balloon effectively. Then the effect of relaxation time and shear modulus on the dynamic response of DE balloon is studied. Furthermore, the dielectric elastomer balloons in practical application exhibit the strong nonlinearity and the viscoelastic dissipation. Therefore, it is important to precisely control the dynamic response. The proportional-integral-differential (PID) controller in the form of nonlinear combination is adopted to control the above nonlinear dynamic systems actively. The results indicate that it is feasible to achieve desired control effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.