During the past decades, scientists have developed different kinds of nanorobots based on various driving principles to realize controlled manipulation of them for potential applications like medical diagnosis and directed cargo delivery. In order to design a nanorobot with advantages of simple operation and precise control that can enrich the family of intelligent nanorobots, an encoding manipulation method is proposed to control the movement of a DNA‐nanoparticle assembled nanorobot by combing electrophoresis and electroosmosis effect in independently charged array nanopores. The nanorobot is composed of one nanoparticle and one or two ssDNAs. ssDNAs act as the legs of the nanorobot. The selective ion transport through charged nanopores can induce cooperation and competition between the electroosmosis and electrophoresis, which is the main power to activate the nanorobot. Thus by simply switching the applied electric field and surface charge density of each nanopore which is defined as the encoded nanopore according to a predetermined strategy, the well‐controlled encoding manipulation including capturing, releasing, jumping, and crawling of the nanorobot is realized in this work. The study is expected to realize its value in many interesting applications like drug delivery, nanosurgery, and so on in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.