Background: Epithelial-mesenchymal transition (EMT) plays a key role in promoting invasion and metastasis of tumor cells. SEMA4C can regulate the generation of transforming growth factor-beta 1 (TGF-b1)-induced EMT in cervical cancer. This study investigated the relationship between the regulation of SEMA4C on TGF-b1-induced p38 mitogen-activated protein kinase (MAPK) activation and invasion and metastasis of cervical cancer. Material/Methods: Hela-shSEMA4C cell line was established and the success of transfection was confirmed with fluorescence intensity. Cell experiments were divided into 2 groups. Group 1 was Hela, Hela-shNC, and Hela-shSEMA4C; and Group 2 was Hela, Hela-shNC, Hela-shSEMA4C, Hela+TGF-b1, Hela-shNC+TGF-b1, and Hela-shSEMA4C+TGF-b1. Group 1 was detected for SEMA4C mRNA expression by real-time polymerase chain reaction (RT-PCR), cell viability by Cell Counting Kit-8 (CCK-8), F-actin fluorescence intensity by immunofluorescence, cell migration by scratch test, and cell invasion by invasion test. Group 2 was analyzed for E-cadherin fluorescence intensity by immunofluorescence, human fibronectin (FN) content by enzyme-linked immunosorbent assay (ELISA), and SEMA4C, E-cadherin and p-p38 expressions by Western blot. Results: For Group 1, compared with Hela and Hela-shNC subgroups, the SEMA4C mRNA expression, cell viability, F-actin fluorescence intensity, cell migration and invasion ability in the Hela-shSEMA4C subgroup were significantly decreased (P<0.05). For Group 2, compared with Hela and Hela-shNC subgroups, the E-cadherin expression and fluorescence intensity in the Hela-shSEMA4C subgroup were significantly increased (P<0.01), while the FN content, SEMA4C, and p-p38 MAPK expressions were significantly decreased (P<0.01). Compared with Hela-shNC+TGF-b1 and Hela+TGF-b1 subgroups, the E-cadherin expression and fluorescence intensity in the Hela-shSEMA4C+TGF-b1 subgroup were significantly increased (P<0.01), while the FN content, SEMA4C and p-p38 expressions were significantly decreased (P<0.01). Conclusions: Downregulation of SEMA4C can inhibit EMT and the invasion and metastasis of cervical cancer cells via inhibiting TGF-b1-induced Hela cells p38 MAPK activation.
Linc00152, located on chromosome 2p11.2, is a long intergenic non‐coding RNA molecule with 828 nucleotides that is highly expressed in many types of human tumor tissues, especially in malignant tumors of the digestive system. Linc00152 promotes the occurrence and development of tumors by increasing tumor cell proliferation, invasion, metastasis, and apoptosis. Additionally, linc00152 contributes to the carcinogenesis of several cancers, including gastric cancer, liver cancer, hepatocellular carcinoma, gallbladder cancer, clear cell renal cell carcinoma, and colorectal cancer, by disturbing various signaling pathways (eg PI3K/AKT, mTOR, IL‐1, and NOTCH 1 signaling pathways). High linc00152 expression levels are associated with chemoresistance as well as poor prognosis and shorter survival. Continual advances made in the relevant research have indicated that linc00152 may be useful as a new tumor molecular biomarker, applicable for tumor diagnosis, targeted therapy, and prognosis assessment. This review summarizes the progress in the research into the relationship between linc00152 and the occurrence and development of malignancies based on molecular functions, regulatory mechanisms, and clinical applications.
We aimed to analyze gastric signet ring cell (SRC) carcinoma subtypes by investigating gastric and intestinal phenotypic marker expression, and explore the relationship between phenotype and K-ras mutation. Immunohistochemistry was performed on 163 SRC carcinoma patient specimens to detect gastric (MUC1, MUC5AC, and MUC6) and intestinal (MUC2 and CDX2) phenotypic markers, and tumors were classified into gastric (G), intestinal (I), and gastrointestinal (GI) phenotypes. DNA was extracted from the formalin-fixed, paraffin-embedded tumor samples, and K-ras mutations in codons 12, 13, and 61 were identified using polymerase chain reaction-based direct DNA sequencing. G, GI, and I phenotypes were observed in 63 (38.6%), 71 (43.5%), and 29 cases (17.8%), respectively. Expression of MUC2 was significantly associated with invasion depth and lymph node metastasis (P = 0.001 and 0.002, respectively), whereas that of CDX2 significantly corresponded to tumor size and submucosal invasion (P = 0.004 and 0.001, respectively). MUC5AC expression was inversely associated with gastric wall invasion (P = 0.001). Intestinal phenotypic marker expression was positively associated with gastric wall invasion and lymph node metastasis. K-ras mutations, all of which were in codon 12, were detected in 20 (12.27%) tumors, were significantly associated with the I phenotype, and exhibited an inverse relationship with MUC5AC and MUC6 expression. I-phenotype SRC carcinomas should be distinguished from those of the G phenotype because of their increased malignancy regarding invasion and metastasis, and higher K-ras aberration rate. The different K-ras mutation frequencies observed imply distinct genetic mechanisms in the carcinogenesis of I- and G-phenotype gastric SRC carcinomas.
Objective: To develop an effective new method for early detection of pancreatic cancer biomarkers and to aid early clinical diagnosis. Methods: A DNA probe (Probe) capable of specifically recognizing the target miRNA was designed. The specific probe of miRNA 21 is designed first, and then mixed with the miRNA 21 sample to form a complex molecule, and the complex molecule is added to the nanochannels to detect the received signal. The probe is designed to detect the electrical signal by means of pre-matching and post-matching and observe the stability of the signal. The miRNA 21, miRNA 155, miRNA 196a were added to the nano-single channel to detect the characteristic signals and blocking time. The miRNA 21Áprobe 21 mixture was mixed with other five cancer-associated microRNAs, and the signal results of the detection were collected and compared. Results: The signal of miRNA 21 was successfully detected. Whether the probe is designed at the front or the back, there are two signal results. The Probe should be designed to match the middle region of the miRNA. The three microRNA complex molecules have different characteristic signals and blocking times, which can be effectively distinguished. Conclusion: Nanochannels can effectively detect pancreatic cancer-related microRNAs.
Objective To find new immune-related prognostic markers for non-small cell lung cancer (NSCLC). Methods We found GSE14814 is related to NSCLC in GEO database. The non-small cell lung cancer observation (NSCLC-OBS) group was evaluated for immunity and divided into high and low groups for differential gene screening according to the score of immune evaluation. A single factor COX regression analysis was performed to select the genes related to prognosis. A prognostic model was constructed by machine learning, and test whether the model has a test efficacy for prognosis. A chip-in-chip non-small cell lung cancer chemotherapy (NSCLC-ACT) sample was used as a validation dataset for the same validation and prognostic analysis of the model. The coexpression genes of hub genes were obtained by pearson analysis and gene enrichment, function enrichment and protein interaction analysis. The tumor samples of patients with different clinical stages were detected by immunohistochemistry and the expression difference of prognostic genes in tumor tissues of patients with different stages was compared. Results By screening, we found that LYN, C3, COPG2IT1, HLA.DQA1, and TNFRSF17 is closely related to prognosis. After machine learning, we constructed the immune prognosis model from these 5 genes, and the model AUC values were greater than 0.9 at three time periods of 1, 3, and 5 years; the total survival period of the low-risk group was significantly better than that of the high-risk group. The results of prognosis analysis in ACT samples were consistent with OBS groups. The coexpression genes are mainly involved B cell receptor signaling pathway and are mainly enriched in apoptotic cell clearance. Prognostic key genes are highly correlated with PDCD1, PDCD1LG2, LAG3, and CTLA4 immune checkpoints. The immunohistochemical results showed that the expression of COPG2IT1 and HLA.DQA1 in stage III increased significantly and the expression of LYN, C3, and TNFRSF17 in stage III decreased significantly compared with that of stage I. The experimental results are consistent with the previous analysis. Conclusion LYN, C3, COPG2IT1, LA.DQA1, and NFRSF17 may be new immune markers to judge the prognosis of patients with non-small cell lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.