Cerebral infarction (CI), also known as ischemic stroke, has a high incidence rate and mortality rate. The purpose of this study was to investigate the potential effect and mechanism of Lymphocyte cytosolic protein 1 (LCP1) in the CI progression. The middle cerebral artery occlusion (MCAO) treated rats and oxygen–glucose deprivation/reoxygenation (OGD/R) stimulated PC12 cells were used to establish CI model in vivo and in vitro. The cell proliferation and apoptosis was determined by CCK-8 assay and flow cytometry, respectively. Immunoprecipitation and western blot was performed to test the lactylation levels of LCP1. The cells were treated with cycloheximide to determined the protein stability of LCP1. The glucose uptake and lactate production was determined with commercial kits. The extracellular acidification rate were evaluated by Seahorse. The results showed that LCP1 was upregulated in the MCAO rats and OGD/R stimulated PC12 cells. LCP1 knockdown dramatically decreased the neurological score, infarct volume and the brain water content of MCAO rats. Besides, LCP1 knockdown promoted the cell viability while decreased the apoptosis rate of the OGD/R stimulated PC12 cells. Additionally, the global lactylation and lactylation levels of LCP1 was prominently enhanced in vivo and in vitro in cerebral infarction. 2-DG treatment prominently decreased it. In conclusion, inhibiting the glycolysis decreased the lactylation levels of LCP1 and resulted in the degradation of LCP1, which eventually relieved the CI progression.
Long non-coding RNAs (lncRNAs) have been implicated in the development of cardiovascular diseases. We observed that lncRNA AK020546 was downregulated following ischemia/reperfusion injury to the myocardium and following H
2
O
2
treatment in H9c2 cardiomyocytes.
In vivo
and
in vitro
studies showed that AK020546 overexpression attenuated the size of the ischemic area, reduced apoptosis among H9c2 cardiomyocytes, and suppressed the release of reactive oxygen species, lactic acid dehydrogenase, and malondialdehyde. AK020546 served as a competing endogenous RNA for miR-350-3p and activated the miR-350-3p target gene
ErbB3
. MiR-350-3p overexpression reversed the effects of AK020546 on oxidative stress injury and apoptosis in H9c2 cardiomyocytes. Moreover,
ErbB3
knockdown alleviated the effects of AK020546 on the expression of ErbB3, Bcl-2, phosphorylated AKT, cleaved Caspase 3, and phosphorylated Bad. These findings suggest lncRNA AK020546 protects against ischemia/reperfusion and oxidative stress injury by sequestering miR-350-3p and activating ErbB3, which highlights its potential as a therapeutic target for ischemic heart diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.