This study was to explore the value of the deep dictionary learning algorithm in constructing a B ultrasound scoring system and exploring its application in the clinical diagnosis and treatment of pernicious placenta previa (PPP). 60 patients with PPP were divided into a low-risk group (severe, implantable) and high-risk group (adhesive, penetrating) according to their clinical characteristics, B ultrasound imaging characteristics, and postpartum pathological examination results. Under PPP ultrasonic image information using the deep learning algorithm, the B ultrasound image diagnostic scoring system was established to predict the depth of various types of placenta accreta. The results showed that the cut-off values of severe, implantable, adhesive, and penetrating types were <2.3, 2.3-6.5, 6.5-9, and ≥9 points, respectively; there were significant differences in the termination of pregnancy and neonatal birth weight between the two groups ( P < 0.05 ); the positive predictive value, negative predictive value, and false positive rate of ultrasound images based on the deep dictionary learning algorithm for PPP were 95.33%, 94.89%, and 3.56%, respectively. Thus, the ultrasound image diagnostic scoring system based on the deep learning algorithm has an important predictive role for PPP, which can provide a more targeted diagnosis and treatment plan for patients in clinical practice and improve the prediction and treatment efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.