We present simultaneous NuSTAR and Swift observations of the black hole transient IGR J17091-3642 during its 2016 outburst. By jointly fitting six NuSTAR and four Swift spectra, we found that during this outburst the source evolves from the hard to the hard/soft intermediate and back to the hard state, similar to the 2011 outburst. Unlike in the previous outburst, in this case we observed both a broad emission and an moderately broad absorption line in our observations. Our fits favour an accretion disc with an inclination angle of ∼45 • with respect to the line of sight and a high iron abundance of 3.5 ± 0.3 in units of the solar abundance. We also observed heartbeat variability in one NuSTAR observation. We fitted the phase-resolved spectra of this observation and found that the reflected emission varies independently from the direct emission, whereas in the fits to the average spectra these two quantities are strongly correlated. Assuming that in IGR J17091-3642 the inner radius of the disc both in the average and the phase-resolved spectra is located at the radius of the innermost stable circular orbit, with 90% confidence the spin parameter of the black hole in this system is −0.13 ≤ a * ≤ 0.27.
We analyse four XMM-Newton observations of the neutron-star low-mass X-ray binary EXO 0748−676 in quiescence. We fit the spectra with an absorbed neutron-star atmosphere model, without the need for a high-energy (power-law) component; with a 95 per cent confidence the power-law contributes less than 1 per cent to the total flux of the source in 0.5 − 10.0 keV. The fits show significant residuals at around 0.5 keV which can be explained by either a hot gas component around the neutron star or a moderately broad emission line from a residual accretion disc. The temperature of the neutron-star has decreased significantly compared to the previous observation, from 124 eV to 105 eV, with the cooling curve being consistent with either an exponential decay plus a constant or a (broken) power law. The best-fitting neutron-star mass and radius can be better constrained if we extend the fits down to the lowest possible energy available. For an assumed distance of 7.1 kpc, the best-fitting neutron-star mass and radius are 2.00 +0.07 −0.24 M ⊙ and 11.3 +1.3 −1.0 km if we fit the spectrum over the 0.3 − 10 keV range, but 1.50 +0.4 −1.0 M ⊙ and 12.2 +0.8 −3.6 km if we restrict the fits to the 0.5 − 10 keV range. We finally discuss the effect of the assumed distance to the source upon the best-fitting neutron-star mass and radius. As systematic uncertainties in the deduced mass and radius depending on the distance are much larger than the statistical errors, it would be disingenuous to take these results at face value.
H1743-322 is one of the few black hole candidates (BHCs) in low-mass X-ray binaries that shows mHz quasi-periodic oscillations (QPOs) that are not associated with the more common type A, B and C oscillations seen in the X-ray light curves of typical BHCs systems. To better understand the physical origin of the mHz oscillations, we carried out a phase-resolved spectroscopic study of two RXTE observations of this source. As previously reported, the averaged energy spectra of H1743-322 shows a strong iron line at ∼ 6.5 keV. Here we found evidence that the line flux appears to be modulated at twice the frequency of the mHz QPO. This line flux modulation is very similar to the one previously found for the type-C QPO in this source. We interpret the possibly periodic line flux modulation with this mHz QPO in terms of Lense-Thirring precession of the inner flow, and discuss the possible connection with the modulation of the line properties with the type-C QPO frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.