This study used finite element (FE) analysis with the load-controlled method (LCM) and the displacement-controlled method (DCM) to examine motion differences at the implant level and adjacent levels between fusion and non-fusion implants. A validated three-dimensional intact (INT) L1-L5 FE model was used. At the L3-L4 level, the INT model was modified to surgery models, including the artificial disc replacement (ADR) of ProDisc II, and the anterior lumbar interbody fusion (ALIF) cage with pedicle screw fixation. The LCM imposed 10 Nm moments of four physiological motions and a 150 N preload at the top of L1. The DCM process was in accordance with the hybrid testing protocol. The average percentage changes in the range of motion (ROM) for whole non-operated levels were used to predict adjacent level effects (ALE%). At the implant level, the ALIF model showed similar stability with both control methods. The ADR model using the LCM had a higher ROM than the model using the DCM, especially in extension and torsion. At the adjacent levels, the ALIF model increased ALE% (at least 17 per cent) using the DCM compared with the LCM. The ADR model had an ALE% close to that of the INT model, using the LCM (average within 6 per cent), while the ALE% decreased when using the DCM. The study suggests that both control methods can be adopted to predict the fusion model at the implant level, and similar stabilization characteristics can be found. The LCM will emphasize the effects of the non-fusion implants. The DCM was more clinically relevant in evaluating the fusion model at the adjacent levels. In conclusion, both the LCM and the DCM should be considered in numerical simulations to obtain more realistic data in spinal implant biomechanics.
BackgroundFinite element analysis results will show significant differences if the model used is performed under various material properties, geometries, loading modes or other conditions. This study adopted an FE model, taking into account the possible asymmetry inherently existing in the spine with respect to the sagittal plane, with a more geometrically realistic outline to analyze and compare the biomechanical behaviour of the lumbar spine with regard to the facet force and intradiscal pressure, which are associated with low back pain symptoms and other spinal disorders. Dealing carefully with the contact surfaces of the facet joints at various levels of the lumbar spine can potentially help us further ascertain physiological behaviour concerning the frictional effects of facet joints under separate loadings or the responses to the compressive loads in the discs.MethodsA lumbar spine model was constructed from processes including smoothing the bony outline of each scan image, stacking the boundary lines into a smooth surface model, and subsequent further processing in order to conform with the purpose of effective finite element analysis performance. For simplicity, most spinal components were modelled as isotropic and linear materials with the exception of spinal ligaments (bilinear). The contact behaviour of the facet joints and changes of the intradiscal pressure with different postures were analyzed.ResultsThe results revealed that asymmetric responses of the facet joint forces exist in various postures and that such effect is amplified with larger loadings. In axial rotation, the facet joint forces were relatively larger in the contralateral facet joints than in the ipsilateral ones at the same level. Although the effect of the preloads on facet joint forces was not apparent, intradiscal pressure did increase with preload, and its magnitude increased more markedly in flexion than in extension and axial rotation.ConclusionsDisc pressures showed a significant increase with preload and changed more noticeably in flexion than in extension or in axial rotation. Compared with the applied preloads, the postures played a more important role, especially in axial rotation; the facet joint forces were increased in the contralateral facet joints as compared to the ipsilateral ones at the same level of the lumbar spine.
ObjectiveTo investigate the biomechanical effects of the lumbar posterior complex on the adjacent segments after posterior lumbar interbody fusion (PLIF) surgeries.MethodsA finite element model of the L1–S1 segment was modified to simulate PLIF with total laminectomy (PLIF-LAM) and PLIF with hemilaminectomy (PLIF-HEMI) procedures. The models were subjected to a 400N follower load with a 7.5-N.m moment of flexion, extension, torsion, and lateral bending. The range of motion (ROM), intradiscal pressure (IDP), and ligament force were compared.ResultsIn Flexion, the ROM, IDP and ligament force of posterior longitudinal ligament, intertransverse ligament, and capsular ligament remarkably increased at the proximal adjacent segment in the PLIF-LAM model, and slightly increased in the PLIF-HEMI model. There was almost no difference for the ROM, IDP and ligament force at L5-S1 level between the two PLIF models although the ligament forces of ligamenta flava remarkably increased compared with the intact lumbar spine (INT) model. For the other loading conditions, these two models almost showed no difference in ROM, IDP and ligament force on the adjacent discs.ConclusionsPreserved posterior complex acts as the posterior tension band during PLIF surgery and results in less ROM, IDP and ligament forces on the proximal adjacent segment in flexion. Preserving the posterior complex during decompression can be effective on preventing adjacent segment degeneration (ASD) following PLIF surgeries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.