By analyzing genetic alterations in different tumor regions of 10 HCCs, we observed extensive intratumor heterogeneity. Our patient-derived cell line-based model, integrating genetic and pharmacologic data from multiregional cancer samples, provides a platform to elucidate how intratumor heterogeneity affects sensitivity to different therapeutic agents.
Results show that inhalation of budesonide (2 mg 3 times/day) and systemic methylprednisolone (40 mg/day) had similar clinical outcome in AECOPD. In conclusion, inhaled budesonide is an alternative to systemic corticosteroids in AECOPD treatment.
BackgroundOxaliplatin-based chemotherapy is widely used to treat hepatocellular carcinoma (HCC). Recent studies suggested that therapeutic resistance of tumors was affected by tumor microenvironment (TME). As a major component of TME, the role of tumor-associated macrophages (TAMs) on drug resistance in HCC is largely unknown.Methods26 HCC samples were obtained from patients who had underwent transarterial chemoembolization (TACE) within 3 months before receiving curative resections. Immunohistochemistry was applied to detect the density of TAMs in these tissues. SMMC-7721 and Huh-7 cell lines were used to co-culture with THP-1 derived macrophages. Under oxaliplatin treatment, cell death was measured using MTT and annexin V/propidium iodide assays. Autophagy activation was evaluated by GFP-LC3 redistribution and LC3 conversion in SMMC-7721 and Huh-7. Short-interfering RNA against ATG5 gene was applied to inhibit autophagy. In vivo validation was conducted in Huh-7 with or without macrophages using an HCC xenograft model in nude mice after oxaliplatin administration.ResultsWe found that the density of TAMs in HCC samples was associated with the efficacy of TACE. Macrophages inhibited cell death induced by oxaliplatin in HCC cells. Autophagy was functionally activated in HCC cells after co-culturing with macrophages. Suppression of autophagy using RNA interference of ATG5 in HCC cells promoted the oxaliplatin cytotoxicity in the co-culture system. Critically, co-implantation with macrophages in HCC xenografts weakens cytotoxic effect of oxaliplatin through inducing autophagy to avoid apoptosis.ConclusionsOur results suggest that TAMs induce autophagy in HCC cells which might contribute to oxaliplatin resistance. Targeting TAMs is a promising therapeutic strategy to enhance the effects of chemotherapy oxaliplatin in HCC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.