Photodetectors (PDs) based on perovskite nanowires are among the most promising next‐generation photodetection technologies; however, their poor long‐term stability is the biggest challenge limiting their commercial application. Herein, an ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIMBF4), is incorporated as an additive into methylammonium lead triiodide (MAPbI3) nanowires; this not only effectively passivates defects to inhibit perovskite degradation but also leads to the formation of nanochannels, enabling fast charge transfer. As a result, the long‐term stability and performance of MAPbI3 nanowires are considerably improved. The detectivity, linear detection range, and noise equivalent power of the MAPbI3 nanowire PD reach 2.06 × 1013 Jones, 160 dB, and 1.38 × 10−15 W Hz−1/2, respectively, comparable to the highest performance of perovskite nanowire PDs reported to date. Moreover, the unencapsulated PD can maintain 100% of its initial performance after being exposed to an open‐air environment for more than 5000 h, establishing it as the most stable perovskite nanowire PD reported to date. Notably, the PD exhibits improved diffuse reflection imaging ability when compared with commercial silicon photodiode S2386. This study provides a new strategy for constructing sensitive, stable, and flexible perovskite PDs and will accelerate their commercial application in the future.
A new particle‐resolved three‐dimensional direct numerical simulation model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measure to represent the effect of various entrainment‐mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated to search for a unified parameterization of entrainment‐mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment‐mixing mechanisms can be reasonably represented with power law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.
In recent years, Pb-free CsSnI3 perovskite materials with excellent photoelectric properties as well as low toxicity are attracting much attention in photoelectric devices. However, deep level defects in CsSnI3, such as high density of tin vacancies, structural deformation of SnI6− octahedra and oxidation of Sn2+ states, are the major challenge to achieve high-performance CsSnI3-based photoelectric devices with good stability. In this work, defect passivation method is adopted to solve the above issues, and the ultra-stable and high-performance CsSnI3 nanowires (NWs) photodetectors (PDs) are fabricated via incorporating 1-butyl-2,3-dimethylimidazolium chloride salt (BMIMCl) into perovskites. Through materials analysis and theoretical calculations, BMIM+ ions can effectively passivate the Sn-related defects and reduce the dark current of CsSnI3 NW PDs. To further reduce the dark current of the devices, the polymethyl methacrylate is introduced, and finally, the dual passivated CsSnI3 NWPDs show ultra-high performance with an ultra-low dark current of 2 × 10–11 A, a responsivity of up to 0.237 A W−1, a high detectivity of 1.18 × 1012 Jones and a linear dynamic range of 180 dB. Furthermore, the unpackaged devices exhibit ultra-high stability in device performance after 60 days of storage in air (25 °C, 50% humidity), with the device performance remaining above 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.