Frequency up-conversion is an effective method of mid-infrared (MIR) detection by converting the long-wavelength photons to the visible domain, where efficient detectors are readily available. Here, we generate the MIR light carrying orbital angular momentum (OAM) from a difference frequency generation process and perform the up-conversion of it via sum frequency conversion in a bulk quasi-phase-matching crystal. The maximum quantum conversion efficiencies from MIR to visible are 34.0%, 10.4%, and 3.5% for light with topological charges of 0, 1, and 2, respectively, which is achieved by utilizing an optimized strong pump light. We also verify the OAM conservation with a specially designed interferometer, and the results agree well with the numerical simulations. Our study opens up the possibilities for generating, manipulating, and detecting MIR light that carries OAM, and will have great potential for optical communications and remote sensing in the MIR regime.
Optical interference is not only a fundamental phenomenon that has enabled new theories of light to be derived but it has also been used in interferometry for the measurement of small displacements, refractive index changes, and surface irregularities. In a two-beam interferometer, variations in the interference fringes are used as a diagnostic for anything that causes the optical path difference (OPD) to change; therefore, for a specified OPD, greater variation in the fringes indicates better measurement sensitivity. Here, we introduce and experimentally validate an interesting optical interference phenomenon that uses photons with a structured frequency-angular spectrum, which are generated from a spontaneous parametric down-conversion process in a nonlinear crystal. This interference phenomenon is manifested as interference fringes that vary much more rapidly with increasing OPD than the corresponding fringes for equal-inclination interference; the phenomenon is parameterised using an equivalent wavelength, which under our experimental conditions is 29.38 nm or about 1/27 of the real wavelength. This phenomenon not only enriches the knowledge with regard to optical interference but also offers promise for applications in interferometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.