The special epistemic characteristics of the COVID-19, such as the long incubation period and the infection through asymptomatic cases, put severe challenge to the containment of its outbreak. By the end of March 2020, China has successfully controlled the within- spreading of COVID-19 at a high cost of locking down most of its major cities, including the epicenter, Wuhan. Since the low accuracy of outbreak data before the mid of Feb. 2020 forms a major technical concern on those studies based on statistic inference from the early outbreak. We apply the supervised learning techniques to identify and train NP-Net-SIR model which turns out robust under poor data quality condition. By the trained model parameters, we analyze the connection between population flow and the cross-regional infection connection strength, based on which a set of counterfactual analysis is carried out to study the necessity of lock-down and substitutability between lock-down and the other containment measures. Our findings support the existence of non-lock-down-typed measures that can reach the same containment consequence as the lock-down, and provide useful guideline for the design of a more flexible containment strategy.
With the development and improvement of modern surveying and remote-sensing technology, data in the fields of surveying and remote sensing have grown rapidly. Due to the characteristics of large-scale, heterogeneous and diverse surveys and the loose organization of surveying and remote-sensing data, effectively obtaining information and knowledge from data can be difficult. Therefore, this paper proposes a method of using ontology for heterogeneous data integration. Based on the heterogeneous, decentralized, and dynamic updates of large surveying and remote-sensing data, this paper constructs a knowledge graph for surveying and remote-sensing applications. First, data are extracted. Second, using the ontology editing tool Protégé, a knowledge graph mode level is constructed. Then, using a relational database, data are stored, and a D2RQ tool maps the data from the mode level’s ontology to the data layer. Then, using the D2RQ tool, a SPARQL protocol and resource description framework query language (SPARQL) endpoint service is used to describe functions such as query and reasoning of the knowledge graph. The graph database is then used to display the knowledge graph. Finally, the knowledge graph is used to describe the correlation between the fields of surveying and remote sensing.
A growing number of countries worldwide have committed to achieving net zero emissions targets by around mid-century since the Paris Agreement. As the world’s greatest carbon emitter and the largest developing economy, China has also set clear targets for carbon peaking by 2030 and carbon neutrality by 2060. Carbon-reduction AI applications promote the green economy. However, there is no comprehensive explanation of how AI affects carbon emissions. Based on panel data for 270 Chinese cities from 2011 to 2017, this study uses the Bartik method to quantify data on manufacturing firms and robots in China and demonstrates the effect of AI on carbon emissions. The results of the study indicate that (1) artificial intelligence has a significant inhibitory effect on carbon emission intensity; (2) the carbon emission reduction effect of AI is more significant in super- and megacities, large cities, and cities with better infrastructure and advanced technology, whereas it is not significant in small and medium cities, and cities with poor infrastructure and low technology level; (3) artificial intelligence reduces carbon emissions through optimizing industrial structure, enhancing information infrastructure, and improving green technology innovation. In order to achieve carbon peaking and carbon neutrality as quickly as possible during economic development, China should make greater efforts to apply AI in production and life, infrastructure construction, energy conservation, and emission reduction, particularly in developed cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.