Studies on some plant species have shown that increasing the growth temperature gradually or pretreating with high temperature can lead to obvious photosynthetic acclimation to high temperature. To test whether this acclimation arises from heat adaptation of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activation mediated by Rubisco activase (RCA), gene expression of RCA large isoform (RCA(L)) and RCA small isoform (RCA(S)) in rice was determined using a 4-day heat stress treatment [40/30 degrees C (day/night)] followed by a 3-day recovery under control conditions [30/22 degrees C (day/night)]. The heat stress significantly induced the expression of RCA(L) as determined by both mRNA and protein levels. Correlative analysis indicated that RCA(S) protein content was extremely significantly related to Rubisco initial activity and net photosynthetic rate (Pn) under both heat stress and normal conditions. Immunoblot analysis of the Rubisco-RCA complex revealed that the ratio of RCA(L) to Rubisco increased markedly in heat-acclimated rice leaves. Furthermore, transgenic rice plants expressing enhanced amounts of RCA(L) exhibited higher thermotolerance in Pn and Rubisco initial activity and grew better at high temperature than wild-type (WT) plants and transgenic rice plants expressing enhanced amounts of RCA(S). Under normal conditions, the transgenic rice plants expressing enhanced amounts of RCA(S) showed higher Pn and produced more biomass than transgenic rice plants expressing enhanced amounts of RCA(L) and wild-type plants. Together, these suggest that the heat-induced RCA(L) may play an important role in photosynthetic acclimation to moderate heat stress in vivo, while RCA(S) plays a major role in maintaining Rubisco initial activity under normal conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.