An 808 nm single-band Mie scattering Scheimpflug lidar system is developed in Dalian, Northern China, for real-time, large-area atmospheric aerosol/particle remote sensing. Atmospheric measurement has been performed in urban area during a typical haze weather condition, and time-range distribution of atmospheric backscattering signal is recorded from March 18th to 22nd, 2017, by employing the Scheimpflug lidar system. Atmospheric extinction coefficient is then retrieved according to the Klett-inversion algorithm, while the boundary value is obtained by the slope-method in the far end where the atmosphere is homogeneous in a subinterval region. The correlation between the extinction coefficients retrieved from the Scheimpflug lidar technique and the PM10/PM2.5 concentrations measured by a conventional air pollution monitoring station is also studied. The good agreement between the measurement results, i.e., a correlation coefficient of 0.85, successfully demonstrates the feasibility and great potential of the Scheimpflug lidar technique for atmospheric studies and applications.
Differential absorption lidar (DIAL) technique employed for remote sensing has been so far based on the sophisticated narrow-band pulsed laser sources, which require intensive maintenance during operation. In this work, a continuous-wave (CW) NO DIAL system based on the Scheimpflug principle has been developed by employing a compact high-power CW multimode 450 nm laser diode as the light source. Laser emissions at the on-line and off-line wavelengths of the NO absorption spectrum are implemented by tuning the injection current of the laser diode. Lidar signals are detected by a 45° tilted area CCD image sensor satisfying the Scheimpflug principle. Range-resolved NO concentrations on a near-horizontal path are obtained by the NO DIAL system in the range of 0.3-3 km and show good agreement with those measured by a conventional air pollution monitoring station. A detection sensitivity of ± 0.9 ppbv at 95% confidence level in the region of 0.3-1 km is achieved with 15-minute averaging and 700 m range resolution during hours of darkness, which allows accurate concentration measurement of ambient NO. The low-cost and robust DIAL system demonstrated in this work opens up many possibilities for field NO remote sensing applications.
A violet Scheimpflug lidar system employing a 1-W 407-nm multimode laser diode is developed for remote sensing of atmospheric aerosols. The laser beam of the laser diode that is transmitted into atmosphere has been investigated in detail and a cylindrical lens pair is designed to improve the geometrical transmission efficiency. A measurement scheme with automatic exposure as well as a generalized signal processing method are established to optimize the signal-to-noise ratio of lidar signals. The performance of the violet Scheimpflug lidar system has been evaluated during a six-day continuous measurement campaign on a near horizontal path. The maximum measurement distance can reach up to 7 km in sunny clean weathers and to about 2 km during haze with an aerosol extinction coefficient of about 0.9 km. The aerosol extinction coefficient retrieved by the Fernald method is promising and shows good correlation with particle concentrations measured by a local national pollution monitoring station. This work promotes the development of all-time Scheimpflug lidar systems operating at other wavelengths or multiple wavelengths for various atmospheric applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.